-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain2.py
156 lines (118 loc) · 4.96 KB
/
train2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
import torchvision
import torch.optim as optim
#from dataloader import load_data
from dataloaders.DetNet_dataloader_aug import load_data
from torch.utils import data as data_utils
from tqdm import tqdm
from torchsummary import summary
import argparse
from models.unet import UNet as M
import random
import numpy as np
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
use_cuda = torch.cuda.is_available()
parser = argparse.ArgumentParser(description='Code to train model')
parser.add_argument("--fold", help="fold index [1-5]", required=True, type=int)
parser.add_argument("--batch_size", help="batch size", default=1, type=int)
parser.add_argument('--root_data', help='data folder path', default="../training/training/training/", type=str)
parser.add_argument('--fold_data', help='fold files path', default="../Data_files/", type=str)
parser.add_argument("--per", help="Percentage of data to be used", default=None, type=float)
parser.add_argument("--weight_root", help="weight folder", default="/content//gdrive/MyDrive/colab-data/weights/", type=str)
parser.add_argument("--model_name", help="name of the weight file", required=True, type=str)
args = parser.parse_args()
def train(device, model, trainloader, valloader, optimizer, nepochs, WEIGTH_PATH):
train_losses = []
val_losses = []
min_val_loss = 1000
early_stop_count = 0
print("")
for epoch in range(nepochs): # loop over the dataset multiple times
running_loss = 0.0
running_acc = 0.0
print("Epoch {} training".format(epoch))
prog_bar = tqdm(enumerate(train_data_loader))
for step, data in prog_bar:
model.train()
# get the inputs; data is a list of [inputs, labels]
x1, x2, x3 = data[0], data[1], data[2]
x1 = x1.to(device)
x2 = x2.to(device)
x3 = x3.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
#outputs = model(inputs)
loss, acc = model.cal_loss(x1, x2, x3, device)
loss.backward()
optimizer.step()
# print statistics
running_loss = ((running_loss * step) + loss.item())/(step+1)
running_acc = ((running_acc * step) + acc.item())/(step+1)
prog_bar.set_description('loss: %.4f, acc: %.4f' % (running_loss, running_acc))
train_losses.append(running_loss)
with torch.no_grad():
val_loss = validate(val_data_loader, epoch, device, model)
val_losses.append(val_loss)
if val_loss < min_val_loss:
early_stop_count = 0
torch.save(model.state_dict(), WEIGTH_PATH)
print("Saving weights: val loss improved from %.4f to %.4f" % (min_val_loss, val_loss))
min_val_loss = val_loss
else:
early_stop_count = early_stop_count + 1
if early_stop_count >= 5:
print(' Training complete due to early stopping')
break
print("")
def validate(val_data_loader, epoch, device, model):
running_loss = 0
running_acc = 0
step = 0
print("Epoch {} validation".format(epoch))
prog_bar = tqdm(enumerate(val_data_loader))
loss_list = []
for step, data in prog_bar:
# Move data to CUDA device
x1, x2, x3 = data[0], data[1], data[2]
x1 = x1.to(device)
x2 = x2.to(device)
x3 = x3.to(device)
model.eval()
val_loss, val_acc = model.cal_loss(x1, x2, x3, device)
running_loss = ((running_loss * step) + val_loss.item())/(step+1)
running_acc = ((running_acc * step) + val_acc.item())/(step+1)
prog_bar.set_description('loss: %.4f, acc: %.4f' % (running_loss, running_acc))
loss_list.append(val_loss.item())
return running_loss
if __name__ == "__main__":
fold = args.fold
per = args.per
seed_select = None
model_name = args.model_name
batch_size = args.batch_size
TRAINING_PATH = args.root_data
FOLD_PATH = args.fold_data + 'classification/' #annfiles_fold' #"fold_struct/fold"
#FOLD_PATH = args.fold_data
ROOT_WEIGHTPATH = args.weight_root
Vid_to_IMG_PATH = args.fold_data + "videoId_to_imgIdx/"
WEIGTH_PATH = ROOT_WEIGHTPATH + model_name + ".pth"
# Dataset and Dataloader setup
#train_dataset = load_data(fold, 0, per, seed_select=seed_select, TRAINING_PATH=TRAINING_PATH, FOLD_PATH=FOLD_PATH, Vid_to_IMG_PATH=Vid_to_IMG_PATH)
#val_dataset = load_data(fold, 1, per, seed_select=seed_select, TRAINING_PATH=TRAINING_PATH, FOLD_PATH=FOLD_PATH, Vid_to_IMG_PATH=Vid_to_IMG_PATH)
train_dataset = load_data(fold, 0, per, seed_select=seed_select, TRAINING_PATH=TRAINING_PATH, FOLD_PATH=FOLD_PATH)
val_dataset = load_data(fold, 1, per, seed_select=seed_select, TRAINING_PATH=TRAINING_PATH, FOLD_PATH=FOLD_PATH)
train_data_loader = data_utils.DataLoader(
train_dataset, batch_size=batch_size, shuffle=True)
val_data_loader = data_utils.DataLoader(
val_dataset, batch_size=batch_size)
device = torch.device("cuda" if use_cuda else "cpu")
# Model
model = M().to(device)
#summary(model, (1, 224, 224))
print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad)))
optimizer = torch.optim.Adam(model.parameters())
# Train!
train(device, model, train_data_loader, val_data_loader, optimizer, nepochs=100, WEIGTH_PATH=WEIGTH_PATH)