forked from nephilim2016/Submit-to-cageo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDisplay.py
92 lines (81 loc) · 4.48 KB
/
Display.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 20 10:40:16 2024
@author: nephilim
"""
import numpy as np
from matplotlib import pyplot,cm
from mpl_toolkits.axes_grid1 import make_axes_locatable
from skimage import filters
if __name__=='__main__':
epsilon_=np.load('./1 LayerModelFWI/LayerModel.npy')
epsilon=np.zeros((120,220))
epsilon[10:-10,10:-10]=epsilon_
CPML=10
epsilon[:CPML,:]=epsilon[CPML,:]
epsilon[-CPML:,:]=epsilon[-CPML-1,:]
epsilon[:,:CPML]=epsilon[:,CPML].reshape((len(epsilon[:,CPML]),-1))
epsilon[:,-CPML:]=epsilon[:,-CPML-1].reshape((len(epsilon[:,-CPML-1]),-1))
epsilon_=epsilon.copy()
epsilon[:13,:]=1
iep=np.linspace(1,10,100)
iep=np.tile(iep,(200,1)).T
iepsilon=np.zeros((120,220))
iepsilon[10:-10,10:-10]=iep
iepsilon[:CPML,:]=iepsilon[CPML,:]
iepsilon[-CPML:,:]=iepsilon[-CPML-1,:]
iepsilon[:,:CPML]=iepsilon[:,CPML].reshape((len(iepsilon[:,CPML]),-1))
iepsilon[:,-CPML:]=iepsilon[:,-CPML-1].reshape((len(iepsilon[:,-CPML-1]),-1))
iepsilon[:13,:]=1
data1=np.load('./1 LayerModelFWI/400000000.0Hz_imodel_file_22_0/4_imodel.npy')
data1=data1.reshape((120,220))
data2=np.load('./2 LayerModel_WithoutMultiply/400000000.0Hz_imodel_file_22_4/4_imodel.npy')
data2=data2.reshape((120,220))
data3=np.load('./3 LayerModel_WithoutRandomSource/400000000.0Hz_imodel_file_100_0/19_imodel.npy')
data3=data3.reshape((120,220))
data4=np.load('./4 LayerModel_WithoutTVRegularization/400000000.0Hz_imodel_file_22_4/4_imodel.npy')
data4=data4.reshape((120,220))
idx=50+10
ep_True=epsilon[10:-10,idx]
ep_Init=iepsilon[10:-10,idx]
ep_FWI1=data1[10:-10,idx]
ep_FWI2=data2[10:-10,idx]
ep_FWI3=data3[10:-10,idx]
ep_FWI4=data4[10:-10,idx]
pyplot.figure(figsize=(20,15))
pyplot.axes().set_aspect(8e-2)
l_a1=pyplot.plot(np.arange(len(ep_True))*0.02,ep_True,'b-',label='True Model')
l_a2=pyplot.plot(np.arange(len(ep_True))*0.02,ep_Init,'k:',label='Initial Model')
l_a3=pyplot.plot(np.arange(len(ep_True))*0.02,ep_FWI1,'r-',label='Result of Comprehensive FWI (S1) Strategies')
l_a4=pyplot.plot(np.arange(len(ep_True))*0.02,ep_FWI2,'c-.',label='Result of FWI without Multi-scale (S2) Strategy')
l_a5=pyplot.plot(np.arange(len(ep_True))*0.02,ep_FWI3,'y:',label='Result of FWI without Random Excitation Source (S3) Strategy')
l_a6=pyplot.plot(np.arange(len(ep_True))*0.02,ep_FWI4,'m-.',label='Result of FWI without TV Regularization (S4) Strategy')
ax=pyplot.gca()
ax.set_xlabel('Depth (m)', fontsize=16)
ax.set_ylabel('$\epsilon_r$', fontsize=16)
lns=l_a1+l_a2+l_a3+l_a4+l_a5+l_a6
labs=[l.get_label() for l in lns]
ax.legend(lns,labs,loc='best', fontsize=16)
pyplot.grid(linestyle='--')
pyplot.savefig('04_FWILine.png',dpi=1000)
pyplot.figure()
pyplot.axes().set_aspect(2e-1)
l_a1=pyplot.plot(np.arange(len(ep_True))[28:50]*0.02,ep_True[28:50],'b-',label='True Model')
l_a2=pyplot.plot(np.arange(len(ep_True))[28:50]*0.02,ep_Init[28:50],'k:',label='Initial Model')
l_a3=pyplot.plot(np.arange(len(ep_True))[28:50]*0.02,ep_FWI1[28:50],'r-',label='Result of Comprehensive FWI Strategies')
l_a4=pyplot.plot(np.arange(len(ep_True))[28:50]*0.02,ep_FWI2[28:50],'c-.',label='Result of FWI without Multi-scale Strategy')
l_a5=pyplot.plot(np.arange(len(ep_True))[28:50]*0.02,ep_FWI3[28:50],'y:',label='Result of FWI without Random Excitation Source Strategy')
l_a6=pyplot.plot(np.arange(len(ep_True))[28:50]*0.02,ep_FWI4[28:50],'m-.',label='Result of FWI without TV Regularization Strategy')
pyplot.ylim([4,5])
pyplot.savefig('05_FWILine0.png',dpi=1000)
pyplot.figure()
pyplot.axes().set_aspect(0.5e-1)
l_a1=pyplot.plot(np.arange(len(ep_True))[55:72]*0.02,ep_True[55:72],'b-',label='True Model')
l_a2=pyplot.plot(np.arange(len(ep_True))[55:72]*0.02,ep_Init[55:72],'k:',label='Initial Model')
l_a3=pyplot.plot(np.arange(len(ep_True))[55:72]*0.02,ep_FWI1[55:72],'r-',label='Result of Comprehensive FWI Strategies')
l_a4=pyplot.plot(np.arange(len(ep_True))[55:72]*0.02,ep_FWI2[55:72],'c-.',label='Result of FWI without Multi-scale Strategy')
l_a5=pyplot.plot(np.arange(len(ep_True))[55:72]*0.02,ep_FWI3[55:72],'y:',label='Result of FWI without Random Excitation Source Strategy')
l_a6=pyplot.plot(np.arange(len(ep_True))[55:72]*0.02,ep_FWI4[55:72],'m-.',label='Result of FWI without TV Regularization Strategy')
pyplot.ylim([6,7.5])
pyplot.savefig('05_FWILine1.png',dpi=1000)