diff --git a/docs/Stats_review.html b/docs/Stats_review.html index 47ed22c..c90a20c 100644 --- a/docs/Stats_review.html +++ b/docs/Stats_review.html @@ -340,7 +340,7 @@

Random Variables (RVs)

  • discrete (numbers of items or successes)
  • continuous (heights, times, weights)
  • -

    We usually use capital letters – e.g. X, Y, sometimes with bold or with subscripts – to denote the RVs. In contrast we use lower case letters, e.g. x, y, k, to denote the values that the RV takes. For instance, lets say that the heights of the woman at Virginia Tech are the RV, X, and X has a normal distribution with mean 62 inches and variance 6^2, i.e., X \sim \mathrm{N}(62,6^2) distribution. Say we then observe the heights of 3 individuals drawn from this distribution – we would write this as: x=( 63.5, 66.3, 62.1 ).

    +

    We usually use capital letters – e.g. X, Y, sometimes with bold or with subscripts – to denote the RVs. In contrast we use lower case letters, e.g. x, y, k, to denote the values that the RV takes. For instance, lets say that the heights of the woman at Virginia Tech are the RV, X, and X has a normal distribution with mean 62 inches and variance 6^2, i.e., X \sim \mathrm{N}(62,6^2) distribution. Say we then observe the heights of 3 individuals drawn from this distribution – we would write this as: x=( 58.8, 62.1, 64.2 ).



    @@ -564,7 +564,7 @@

    Probability Distributions in R

    rnorm(3, mean=0, sd=1) ## random draws
    -
    [1] -0.2085685  0.1056252  1.8288412
    +
    [1] 0.02318727 0.28406256 0.56712882
    diff --git a/docs/Stats_review_files/figure-html/unnamed-chunk-7-1.png b/docs/Stats_review_files/figure-html/unnamed-chunk-7-1.png index 22ebda6..69b69b8 100644 Binary files a/docs/Stats_review_files/figure-html/unnamed-chunk-7-1.png and b/docs/Stats_review_files/figure-html/unnamed-chunk-7-1.png differ diff --git a/docs/Stats_review_files/figure-html/unnamed-chunk-8-1.png b/docs/Stats_review_files/figure-html/unnamed-chunk-8-1.png index e0612ef..c245c67 100644 Binary files a/docs/Stats_review_files/figure-html/unnamed-chunk-8-1.png and b/docs/Stats_review_files/figure-html/unnamed-chunk-8-1.png differ diff --git a/docs/Stats_review_files/figure-html/unnamed-chunk-9-1.png b/docs/Stats_review_files/figure-html/unnamed-chunk-9-1.png index f921e38..f52dddf 100644 Binary files a/docs/Stats_review_files/figure-html/unnamed-chunk-9-1.png and b/docs/Stats_review_files/figure-html/unnamed-chunk-9-1.png differ diff --git a/docs/VB_RegDiagTrans.html b/docs/VB_RegDiagTrans.html index 7539570..8140768 100644 --- a/docs/VB_RegDiagTrans.html +++ b/docs/VB_RegDiagTrans.html @@ -455,7 +455,7 @@

    SLR model assumptions

    Example model violations

    -

    Anscombe’s quartet comprises four datasets that have similar statistical properties ...

    +

    Anscombe’s quartet comprises four datasets that have similar statistical properties …

    @@ -505,7 +505,7 @@

    Example model violations

    -

    ...but vary considerably when graphed:

    +

    …but vary considerably when graphed:

    @@ -519,7 +519,7 @@

    Example model violations

    -

    The regression lines and \(R^2\) values are the same...
    +

    The regression lines and \(R^2\) values are the same…

    @@ -560,7 +560,7 @@

    Example model violations

    -

    ...but the residuals, \(e\), (plotted vs. \(\hat{Y~}\)) look totally different.

    +

    …but the residuals, \(e\), (plotted vs. \(\hat{Y~}\)) look totally different.

    @@ -628,7 +628,7 @@

    Understanding Leverage

    Here is a nice online (interactive) illustration of leverage:

    -https://omaymas.shinyapps.io/Influence_Analysis/ +https://omaymas.shinyapps.io/Influence_Analysis/


    Outliers do more damage if they have high leverage!

    @@ -647,7 +647,7 @@

    Standardized residuals

    -

    About estimating \(s\) under sketchy SLR assumptions ...

    +

    About estimating \(s\) under sketchy SLR assumptions …

    We want to see whether any particular \(e_i\) is “too big”, but we don’t want a single outlier to make \(s\) artificially large.


    @@ -715,7 +715,7 @@

    How to deal with outliers

    Outliers, leverage, and residuals

    Warning: Unfortunately, outliers with high leverage are hard to catch through \(\color{dodgerblue}{r_i}\) (since the line is pulled towards them).

    -

    Means get distracted by outliers...
    +

    Means get distracted by outliers…

    @@ -870,7 +870,7 @@

    Solution 1: Variance stabilizing transformations

    We have a multiplicative model now!


    -

    Note: you CANNOT compare \(R^2\) values for regressions corresponding to different transformations of the response.

    +

    Note: you CANNOT compare \(R^2\) values for regressions corresponding to different transformations of the response.

    @@ -1012,7 +1012,7 @@

    Elasticity and the log-log model

    -

    Summary: Plots of residuals v.s. \(\color{red}X\) or \(\color{red}{\hat{Y~}}\) are most important for diagnosing problems.

    +

    Summary: Plots of residuals v.s. \(\color{red}X\) or \(\color{red}{\hat{Y~}}\) are most important for diagnosing problems.