-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_pcap_learning.py
499 lines (404 loc) · 24.5 KB
/
detect_pcap_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
# LiDAR-based pedestrian detection, tracking and prediction based on YOLOv5 architecture
# Work done by:
# - Virgile Foussereau
# - Jyh-Chwen Ko
# During a Computer Vision course given by Mathieu Brédif at École Polytechnique
"""
Run inference on pcap
Usage:
$ python detect_PCAP_learning.py --class 0 --weights best.pt --conf-thres=0.4 --source Ouster-YOLOv5-sample.pcap --metadata-path Ouster-YOLOv5-sample.json --view-img
"""
import argparse
import os
import sys
from pathlib import Path
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.proj3d import proj_transform
from mpl_toolkits.mplot3d.axes3d import Axes3D
from matplotlib.patches import FancyArrowPatch
import pickle
import numpy as np
import cv2
import torch
import torch.backends.cudnn as cudnn
from more_itertools import nth
from sklearn.neighbors import KDTree
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadNumpy
from utils.general import (LOGGER, check_file, check_img_size, check_requirements, colorstr,
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync
from ouster import client
from ouster import pcap
from contextlib import closing
import logging
@torch.no_grad()
def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s)
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
imgsz=640, # inference size (pixels)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
social_distance=False,
metadata_path=ROOT / 'example.json'
):
source = str(source)
is_pcap = source.endswith('.pcap')
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn)
stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
imgsz = check_img_size(imgsz, s=stride) # check image size
# Half
half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
if pt:
model.model.half() if half else model.model.float()
# Dataloader
if is_pcap:
print('pcap file')
metadata_path = str(metadata_path)
with open(metadata_path, 'r') as f:
metadata = client.SensorInfo(f.read())
fps = int(str(metadata.mode)[-2:])
print('fps: ', fps)
width = int(str(metadata.mode)[:4])
print('width: ', width)
height = int(str(metadata.prod_line)[5:])
print('height: ', height)
pcap_file = pcap.Pcap(source, metadata)
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
max_range_background_val = np.zeros((height, width), dtype=np.uint8)
scan_range_field = nth(client.Scans(pcap_file), 45).field(client.ChanField.RANGE)
scan_range_val = client.destagger(pcap_file.metadata, scan_range_field)
max_threshold = np.sort(scan_range_val.flatten())[-10]
print("max_threshold for range: ", max_threshold)
with closing(client.Scans(pcap_file)) as scans:
for scan in scans:
scan_range_field = scan.field(client.ChanField.RANGE)
scan_range_val = client.destagger(pcap_file.metadata, scan_range_field)
scan_range_val = np.minimum(scan_range_val, max_threshold)
max_range_background_val = np.maximum(max_range_background_val, scan_range_val)
print("Background isolation complete")
#Uncomment to save max range background in txt file and png file
# np.savetxt("max_range_background_val.txt", max_range_background_val, fmt='%d')
# plt.imshow(max_range_background_val, cmap='viridis', resample=False)
# plt.savefig('max_range_background_val.png')
pcap_file = pcap.Pcap(source, metadata)
with closing(client.Scans(pcap_file)) as scans:
save_path = str(save_dir/"results.mp4") # im.jpg
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
bs = 1 # batch_size
save_pathHumanSegmentation = str(save_dir/"resultsHumanSegmentation.mp4") # im.jpg
vid_writerHumanSegmentation = cv2.VideoWriter(save_pathHumanSegmentation, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
centerOfMass_list = []
k_scan = 0
for scan in scans:
k_scan += 1
ref_field = scan.field(client.ChanField.REFLECTIVITY)
ref_val = client.destagger(pcap_file.metadata, ref_field)
#ref_img = (ref_val / np.max(ref_val) * 255).astype(np.uint8)
ref_img = ref_val.astype(np.uint8)
range_field = scan.field(client.ChanField.RANGE)
range_val = client.destagger(pcap_file.metadata, range_field)
#range_img = (range_val / np.max(range_val) * 255).astype(np.uint8)
#range_img = range_val
combined_img = np.dstack((ref_img, ref_img, ref_img))
xyzlut = client.XYZLut(metadata)
xyz_destaggered = client.destagger(metadata, xyzlut(scan))
#run inference
dataset = LoadNumpy(numpy=combined_img, path="", img_size=imgsz, stride=stride, auto=pt and not jit)
if pt and device.type != 'cpu':
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.model.parameters()))) # warmup
dt, seen = [0.0, 0.0, 0.0], 0
for path, im, im0s, vid_cap, s in dataset:
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
dt[2] += time_sync() - t3
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
#save_path = str(save_dir / p.name) # im.jpg
#txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
txt_path = str(save_dir / 'labels' / p.stem)
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
poi_list = []
xyz_list = []
xyxy_list = []
range_list = []
detectedHuman = np.zeros(range_val.shape)
n_detected = 0
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
n_detected += 1
xyxy_list.append(xyxy)
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
x1 = int(xyxy[0])
y1 = int(xyxy[1])
x2 = int(xyxy[2])
y2 = int(xyxy[3])
range_roi = range_val[int(xyxy[1]):int(xyxy[3]), int(xyxy[0]):int(xyxy[2])] #whole box
range_roi[np.where(range_roi==0)] = max_threshold #add a big number to zero range
min_range = np.min(range_roi)
range_list.append(min_range)
multiple_poi_list = []
multiple_xyz_list = []
lines, columns = range_roi.shape
for i in range(lines):
for j in range(columns):
poi_x = j + x1
poi_y = i + y1
poi = (poi_y, poi_x) #(y,x) in global
if range_val[poi] <= max_range_background_val[poi]-500:
multiple_poi_list.append(poi)
xyz_val = xyz_destaggered[poi]
multiple_xyz_list.append(xyz_val)
detectedHuman[poi] = 1
# transform scan data to 3d points
multiple_xyz_list = np.array(multiple_xyz_list)
# Remove outliers
multiple_xyz_list_reduced, mask_outliers = outlierRemoval3d(multiple_xyz_list, k=4)
for i in range(len(multiple_poi_list)):
if mask_outliers[i]:
detectedHuman[multiple_poi_list[i]] = 0
# Compute centroid
centerOfMass = np.mean(multiple_xyz_list_reduced, axis=0)
closestPointToCenterOfMass_idx = np.argmin(np.linalg.norm(multiple_xyz_list - centerOfMass, axis=1))
closestPointToCenterOfMass = multiple_xyz_list[closestPointToCenterOfMass_idx]
closestPointToCenterOfMass_poi = multiple_poi_list[closestPointToCenterOfMass_idx]
#find previous position of the person
if k_scan != 0:
min_dist = 100000
min_dist_idx = -1
for idx, obj in enumerate(centerOfMass_list):
if len(obj) > 0 and len(obj) <= k_scan:
dist = np.linalg.norm(obj[-1] - centerOfMass)
if dist < min_dist:
min_dist = dist
min_dist_idx = idx
if min_dist > 0.5 and n_detected > len(centerOfMass_list):
centerOfMass_list.append([centerOfMass])
displacement_computed = False
else:
displacement_computed = True
n_frames = min(len(centerOfMass_list[min_dist_idx]), 3)
displacement = (centerOfMass - centerOfMass_list[min_dist_idx][-n_frames]) / n_frames
centerOfMass_list[min_dist_idx].append(centerOfMass)
else:
centerOfMass_list.append([centerOfMass])
displacement_computed = False
#plt.imshow(detectedHuman, cmap='gray', resample=False)
#plt.savefig('detectedHuman.png')
#uncomment to plot 3d points of detected human
colors_detected = ['y', 'g', 'b', 'k']
color_choice = colors_detected[n_detected % len(colors_detected)]
ax.scatter(multiple_xyz_list_reduced[:,0], multiple_xyz_list_reduced[:,1], multiple_xyz_list_reduced[:,2], c=color_choice, marker='o', alpha=0.3)
ax.scatter(centerOfMass[0], centerOfMass[1], centerOfMass[2], c='k', marker='x')
if displacement_computed:
ax.arrow3D(centerOfMass[0], centerOfMass[1], centerOfMass[2],
displacement[0]*30, displacement[1]*30, 0, #prediction on next 30 frames
mutation_scale=10,
ec ='red',
fc='red',
alpha=1)
ax.scatter(closestPointToCenterOfMass[0], closestPointToCenterOfMass[1], closestPointToCenterOfMass[2], c='g', marker='o')
ax.view_init(azim=0, elev=90) #top view
ax.set_xlim(0, 5)
ax.set_ylim(-3, 7)
ax.set_zlim(-1.5, 1.5)
poi_list.append(closestPointToCenterOfMass_poi)
if social_distance == False:
annotator.box_label(xyxy, label, color=colors(c, True))
xyz_val = xyz_destaggered[poi]
xyz_list.append(xyz_val)
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
plt.savefig('PNG/arrow'+str(k_scan)+'.png')
plt.close()
imHumanSegmentation = (detectedHuman * 255).astype(np.uint8)
imSeg_stack = np.dstack((imHumanSegmentation, imHumanSegmentation, imHumanSegmentation))
import csv
if save_txt:
csv_file = open(txt_path + '.csv', 'a', newline='')
writer = csv.writer(csv_file)
if social_distance == True:
if len(poi_list) < 2:
print('just 1 object')
if save_txt: # Write to file
writer.writerow([1, 0, 0])
else:
xyz_1 = xyz_list[0]
xyz_2 = xyz_list[1]
import math
dist = math.sqrt((xyz_1[0] - xyz_2[0])**2 + (xyz_1[1] - xyz_2[1])**2 + (xyz_1[2] - xyz_2[2])**2)
annotator.display_distance(xyxy_list[0], poi_list[0], label, dist, color=colors(c, True))
annotator.display_distance(xyxy_list[1], poi_list[1], label, dist, color=colors(c, True))
if save_txt: # Write to file
writer.writerow([2, dist, 1 if dist < 1.8 else 0])
# Print time (inference-only)
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
# Stream results
im0 = annotator.result()
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
vid_writer.write(im0)
vid_writerHumanSegmentation.write(imSeg_stack)
#vid_writer.release()
vid_writerHumanSegmentation.release()
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights) # update model (to fix SourceChangeWarning)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--social-distance', action='store_true', help='calculate distance between two people')
parser.add_argument('--metadata-path', type=str, default=ROOT / 'example.json', help='metadata path')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(FILE.stem, opt)
return opt
def outlierRemoval3d(points, k=2):
"""
Remove outliers from a point cloud using the 3D distance to the kth nearest neighbor.
:param points: Nx3 numpy array of 3D points
:param k: number of nearest neighbors to use for outlier removal
:return: Nx3 numpy array of inlier 3D points and mask of the outliers
"""
tree = KDTree(points, leaf_size=40)
dist, _ = tree.query(points, k=k+1)
dist = dist[:, k]
thresh = np.mean(dist)*1.1
print("thresh", thresh)
print("mean", np.mean(dist))
mask = np.where(dist > thresh, 1, 0)
return points[dist < thresh], mask
class Arrow3D(FancyArrowPatch):
def __init__(self, x, y, z, dx, dy, dz, *args, **kwargs):
super().__init__((0, 0), (0, 0), *args, **kwargs)
self._xyz = (x, y, z)
self._dxdydz = (dx, dy, dz)
def draw(self, renderer):
x1, y1, z1 = self._xyz
dx, dy, dz = self._dxdydz
x2, y2, z2 = (x1 + dx, y1 + dy, z1 + dz)
xs, ys, zs = proj_transform((x1, x2), (y1, y2), (z1, z2), self.axes.M)
self.set_positions((xs[0], ys[0]), (xs[1], ys[1]))
super().draw(renderer)
def do_3d_projection(self, renderer=None):
x1, y1, z1 = self._xyz
dx, dy, dz = self._dxdydz
x2, y2, z2 = (x1 + dx, y1 + dy, z1 + dz)
xs, ys, zs = proj_transform((x1, x2), (y1, y2), (z1, z2), self.axes.M)
self.set_positions((xs[0], ys[0]), (xs[1], ys[1]))
return np.min(zs)
def _arrow3D(ax, x, y, z, dx, dy, dz, *args, **kwargs):
'''Add an 3d arrow to an `Axes3D` instance.'''
arrow = Arrow3D(x, y, z, dx, dy, dz, *args, **kwargs)
ax.add_artist(arrow)
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
setattr(Axes3D, 'arrow3D', _arrow3D)
opt = parse_opt()
main(opt)