-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_rl.py
144 lines (121 loc) · 4.78 KB
/
main_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
from world import World
from agents import Car, RingBuilding, CircleBuilding, Painting, Pedestrian
from geometry import Point
import time
from tkinter import *
from steering_control import *
from matplotlib import pyplot as plt
import sys
import pickle
def save_rl_policy(var_rl, name):
with open(name, 'wb') as f:
pickle.dump(var_rl, f)
f.close()
def read_rl_policy(name):
with open(name, 'rb') as f:
var_rl = pickle.load(f)
f.close()
return var_rl
# environment
dt = 0.1 # time steps in terms of seconds. In other words, 1/dt is the FPS.
world_width = 120 # in meters
world_height = 120
inner_building_radius = 30
num_lanes = 2
lane_marker_width = 0.5
num_of_lane_markers = 50
lane_width = 3.5
# build world
w = World(dt, width=world_width, height=world_height,
ppm=6) # The world is 120 meters by 120 meters. ppm is the pixels per meter.
# Let's add some sidewalks and RectangleBuildings.
# A Painting object is a rectangle that the vehicles cannot collide with.
# So we use them for the sidewalks / zebra crossings / or creating lanes.
# A CircleBuilding or RingBuilding object is also static -- they do not move.
# But as opposed to Painting, they can be collided with.
# To create a circular road, we will add a CircleBuilding and then a RingBuilding around it
cb = CircleBuilding(Point(world_width / 2, world_height / 2), inner_building_radius, 'gray80')
w.add(cb)
rb = RingBuilding(Point(world_width / 2, world_height / 2),
inner_building_radius + num_lanes * lane_width + (num_lanes - 1) * lane_marker_width,
1 + np.sqrt((world_width / 2) ** 2 + (world_height / 2) ** 2), 'gray80')
w.add(rb)
# Let's also add some lane markers on the ground. This is just decorative. Because, why not.
for lane_no in range(num_lanes - 1):
lane_markers_radius = inner_building_radius + (lane_no + 1) * lane_width + (lane_no + 0.5) * lane_marker_width
lane_marker_height = np.sqrt(2 * (lane_markers_radius ** 2) * (1 - np.cos(
(2 * np.pi) / (2 * num_of_lane_markers)))) # approximate the circle with a polygon and then use cosine theorem
for theta in np.arange(0, 2 * np.pi, 2 * np.pi / num_of_lane_markers):
dx = lane_markers_radius * np.cos(theta)
dy = lane_markers_radius * np.sin(theta)
w.add(Painting(Point(world_width / 2 + dx, world_height / 2 + dy), Point(lane_marker_width,
lane_marker_height),
'white', heading=theta))
# A Car object is a dynamic object -- it can move. We construct it using its center location and heading angle.
c1 = Car(Point(91.75, 60), np.pi / 2)
c1.max_speed = 30.0 # let's say the maximum is 30 m/s (108 km/h)
c1.velocity = Point(0, 3.0)
# A Car object is a dynamic object -- it can move. We construct it using its center location and heading angle.
c2 = Car(Point(60, 95.25), np.pi)
c2.max_speed = 30.0 # let's say the maximum is 30 m/s (108 km/h)
c2.velocity = Point(0, 2.0)
# reinforcement learning steering control
rl_mode = 'test'
c1_rl = None
c2_rl = None
episode_num = 15000
if rl_mode == 'train':
# car 1 reinforcement learning
w.add(c1)
c1_rl = RLSteering(c1, w, episode=episode_num)
c1_rl.q_learning()
c1_rl.delete_vars()
save_rl_policy(c1_rl, 'car1_rl.pkl')
# reset world
w.reset()
# car 2 reinforcement learning
w.add(c2)
c2_rl = RLSteering(c2, w, episode=episode_num)
c2_rl.q_learning()
c2_rl.delete_vars()
save_rl_policy(c2_rl, 'car2_rl.pkl')
elif rl_mode == 'test':
w.add(c1)
w.add(c2)
c1_rl = RLSteering(c1, w)
saved_rl_obj = read_rl_policy('car1_rl.pkl')
c1_rl.overwrite(saved_rl_obj)
c2_rl = RLSteering(c2, w)
saved_rl_obj = read_rl_policy('car2_rl.pkl')
c2_rl.overwrite(saved_rl_obj)
# simulate
# car 1 - position reset
# c1.center.x = 91.75
# c1.center.y = 60
# c1.heading = np.pi / 2
# c1.center.x = c1_rl.car_x_init
# c1.center.y = c1_rl.car_y_init
# c1.heading = c1_rl.car_heading_init
# car 2 - position reset
# c2.center.x = 60
# c2.center.y = 95.25
# c2.heading = np.pi
# c2.center.x = c2_rl.car_x_init
# c2.center.y = c2_rl.car_y_init
# c2.heading = c2_rl.car_heading_init
w.render() # This visualizes the world we just constructed.
for k in range(600):
''' Reinforcement Learning '''
heading_new = c1.heading + c1_rl.get_rl_action(c1.center.x, c1.center.y)
c1.set_control(heading_new, 0.06) # no acceleration
heading_new = c2.heading + c2_rl.get_rl_action(c2.center.x, c2.center.y)
c2.set_control(heading_new, 0.06) # no acceleration
w.tick() # This ticks the world for one time step (dt second)
w.render()
time.sleep(dt / 4) # Let's watch it 4x
if w.collision_exists(): # We can check if there is any collision at all.
print('Collision exists somewhere...')
else:
print("Error in reinforcement learning mode! It should be either 'train' or 'test'.")
sys.exit(-1)