-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathsingle_visualize.py
39 lines (34 loc) · 1.48 KB
/
single_visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# encoding: utf-8
import time
import torch
import itertools
import numpy as np
from PIL import Image
from grid_sample import grid_sample
from torch.autograd import Variable
from tps_grid_gen import TPSGridGen
source_image = Image.open('demo/source_avatar.jpg').convert(mode = 'RGB')
source_image = np.array(source_image).astype('float32')
source_image = np.expand_dims(source_image.swapaxes(2, 1).swapaxes(1, 0), 0)
source_image = Variable(torch.from_numpy(source_image))
_, _, source_height, source_width = source_image.size()
target_height = 400
target_width = 400
# creat control points
target_control_points = torch.Tensor(list(itertools.product(
torch.arange(-1.0, 1.00001, 2.0 / 4),
torch.arange(-1.0, 1.00001, 2.0 / 4),
)))
source_control_points = target_control_points + torch.Tensor(target_control_points.size()).uniform_(-0.1, 0.1)
print('initialize module')
beg_time = time.time()
tps = TPSGridGen(target_height, target_width, target_control_points)
past_time = time.time() - beg_time
print('initialization takes %.02fs' % past_time)
source_coordinate = tps(Variable(torch.unsqueeze(source_control_points, 0)))
grid = source_coordinate.view(1, target_height, target_width, 2)
canvas = Variable(torch.Tensor(1, 3, target_height, target_width).fill_(255))
target_image = grid_sample(source_image, grid, canvas)
target_image = target_image.data.numpy().squeeze().swapaxes(0, 1).swapaxes(1, 2)
target_image = Image.fromarray(target_image.astype('uint8'))
target_image.save('demo/target_avatar.jpg')