-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net.py
executable file
·88 lines (66 loc) · 2.25 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#!/usr/bin/env python
import path
from fcn.train import get_training_roidb, train_net
from fcn.config import cfg, cfg_from_file, get_output_dir
from datasets.factory import get_imdb
import argparse
import pprint
import numpy as np
import sys
import os
def parse_args():
parser = argparse.ArgumentParser(description='Train a network')
parser.add_argument('--gpu', dest='gpu_id',
help='GPU device id to use [0]',
default=0, type=int)
parser.add_argument('--iters', dest='max_iters',
help='number of iterations to train',
default=40000, type=int)
parser.add_argument('--weights', dest='pretrained_model',
help='initialize with pretrained model weights',
default=None, type=str)
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file',
default=None, type=str)
parser.add_argument('--imdb', dest='imdb_name',
help='dataset to train on',
default='shapenet_scene_train', type=str)
parser.add_argument('--rand', dest='randomize',
help='randomize (do not use a fixed seed)',
action='store_true')
parser.add_argument('--network', dest='network_name',
help='name of the network',
default=None, type=str)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
# print('Called with args:')
# print(args)
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
print('Using config:')
pprint.pprint(cfg)
if not args.randomize:
# fix the random seeds (numpy and caffe) for reproducibility
np.random.seed(cfg.RNG_SEED)
imdb = get_imdb(args.imdb_name)
print 'Loaded dataset `{:s}` for training'.format(imdb.name)
roidb = get_training_roidb(imdb)
output_dir = get_output_dir(imdb, None)
print 'Output will be saved to `{:s}`'.format(output_dir)
device_name = '/gpu:{:d}'.format(args.gpu_id)
cfg.GPU_ID = args.gpu_id
print device_name
pretrained_model = args.pretrained_model
from networks.factory import get_network
network = get_network(args.network_name)
# import ipdb
# ipdb.set_trace()
print 'Use network `{:s}` in training'.format(args.network_name)
train_net(network, imdb, roidb, output_dir,
pretrained_model=pretrained_model,
max_iters=args.max_iters)