-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_extension_CNN.py
284 lines (262 loc) · 11 KB
/
_extension_CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#Extension with CNN feature
#Wenhui Yu, 2018.10.29
import numpy as np
from readdata import readdata
from evaluation_F1 import evaluation_F1
from evaluation_NDCG import evaluation_NDCG
from save_result import save_result
from read_feature import read_feature
from numpy import *
import xlwt
import time
import json
## parameters setting
dataset = 5 # datasets, 3 for Clothing and 5 for Jewelry
eta = 0.05 # learning rate
eta_1 = 0.01 # weighting parameter 1
eta_2 = 0.01 # weighting parameter 2
K0 = 200 # length of latent factors
top_k = [2, 5, 10, 20, 50] # set top k
batch_size_train = 5000 # batch size for training
batch_size_test = 1000 # batch size for test
lambda_r = 1 # regularization coefficient
vali_test = 0 # select validate set or test set, 0 for validate, 1 for test
feat = [0]
epoch = 200 # number of epoch
def d(x):
# delta function for BPR
if x > 10:
return 0
if x < -10:
return 1
if x >= -10 and x <= 10:
return 1.0 / (1.0 + exp(x))
def get_feature(dataset):
data_path = 'E:\par_mat' + dataset_list[dataset] + '.json'
with open(data_path) as f:
line = f.readline()
train_data = json.loads(line)
f.close()
[E, F, R_fou, Lam_u, Lam_v] = train_data
return np.array(E), np.array(F)
def get_feature_cnn(dataset):
feat_list = ['CNN', 'AES', 'CH']
Fc = read_feature(feat_list[feat[0]], dataset, Q)
for i in range(1, len(feat)):
Fc = np.hstack((Fc, read_feature(feat_list[feat[i]], feature_length, dataset, Q)))
return Fc
def test_SPLR(U, V, Mc, Fc):
# test the effectiveness of the model
U = mat(U)
V = mat(V)
Mc = mat(Mc)
Fc = mat(Fc)
k_num = len(top_k)
# k_num-length lists for F1 and NDCG
F1 = np.zeros(k_num)
NDCG = np.zeros(k_num)
num_item = len(Test)
# select batch_size_test test samples randomly
for i in range(batch_size_test):
j = int(math.floor(num_item * random.random()))
# the form of test data is [u, [i, i, i, i], [r, r, r]]
u = Test[j][0]
# test sample :u & [i, i, i, i]
positive_item = Test[j][1]
# score all items
score = U[u] * V.T + Mc[u] * Fc.T #get the score of each item
score = score.tolist()[0] #mat -> list
# ordering
b = zip(score, range(len(score)))
b.sort(key=lambda x: x[0])
order = [x[1] for x in b]
order.reverse()
# remove the positive samples from the item order list
train_positive = train_data_aux[u][0]
for item in train_positive:
order.remove(item)
# remove the positive samples from the test items
positive_item = list(set(positive_item) - set(train_positive))
# test for every top_k
for i in range(len(top_k)):
F1[i] += evaluation_F1(order, top_k[i], positive_item)
NDCG[i] += evaluation_NDCG(order, top_k[i], positive_item)
# calculate the average
F1 = (F1 / batch_size_test).tolist()
NDCG = (NDCG / batch_size_test).tolist()
return F1, NDCG
def train_SPLR(eta):
# training
# matrices initialization
U = np.array([np.array([(random.random() / math.sqrt(K0)) for j in range(K0)]) for i in range(P)])
V = np.array([np.array([(random.random() / math.sqrt(K0)) for j in range(K0)]) for i in range(Q)])
Mc = np.array([np.array([(random.random() / math.sqrt(Kc)) for j in range(Kc)]) for i in range(P)])
e = 100000000000000000000000
# output the F1 and NDCG before training
print 'iteration ', 0,
[F1, NDCG] = test_SPLR(U, V, Mc, Fc)
Fmax = 0
if F1[0] > Fmax:
Fmax = F1[0]
print Fmax, 'F1: ', F1, ' ', 'NDCG1: ', NDCG
## save the results in Excel file
save_result([' '], [''] * len(top_k), [''] * len(top_k), path_excel)
save_result('metric', ['F1'] * len(top_k), ['NDCG'] * len(top_k), path_excel)
save_result('Top_k', top_k, top_k, path_excel)
save_result([' '], [''] * len(top_k), [''] * len(top_k), path_excel)
save_result('iteration ' + str(0), F1, NDCG, path_excel)
# get the number of training samples
Re = len(train_data)
# split the training data by batch_size_train
bs = range(0, Re, batch_size_train)
bs.append(Re)
# begin iterating
for ep in range(0, epoch):
print 'iteration ', ep + 1,
eta = eta * 0.99
# enumerate all positive samples
for i in range(0, len(bs) - 1):
if abs(U.sum()) < e:
# for all positive samples, input them as batches
# initialize dU, dV, dM, dN
dU = np.zeros((P, K0))
dV = np.zeros((Q, K0))
dMc = np.zeros((P, Kc))
for re in range(bs[i], bs[i + 1]):
# [u, i, r]
p = train_data[re][0]
qi = train_data[re][1]
xi = np.dot(U[p], V[qi]) + np.dot(Mc[p], Fc[qi])
num = 0
# select 5 negative samples randomly to calculate the gradient
while num < 5:
qj = int(random.uniform(0, Q))
if not (qj in train_data_aux[p][0]):
num += 1
xj = np.dot(U[p], V[qj]) + np.dot(Mc[p], Fc[qj])
xij = xi - xj
dU[p] += d(xij) * (V[qi] - V[qj])
dV[qi] += d(xij) * U[p]
dV[qj] -= d(xij) * U[p]
dMc[p] += d(xij) * (Fc[qi] - Fc[qj])
neighbor = set()
neighbor = neighbor | set(CNN_cluster_dic[CNN_cluster_list[qi]][0])
neighbor = list(neighbor)
if len(neighbor) > 5:
num = 0
while num < 5:
qj = neighbor[int(random.uniform(0, len(neighbor) - 0.1))]
if not (qj in train_data_aux[p][0]):
num += 1
xj = np.dot(U[p], V[qj]) + np.dot(Mc[p], Fc[qj])
xij = xi - xj
dU[p] += eta_1 * d(xij) * (V[qi] - V[qj])
dV[qi] += eta_1 * d(xij) * U[p]
dV[qj] -= eta_1 * d(xij) * U[p]
dMc[p] += eta_1 * d(xij) * (Fc[qi] - Fc[qj])
num = 0
while num < 5:
qj = int(random.uniform(0, Q))
if not (qj in train_data_aux[p][0] or qj in neighbor):
qi = neighbor[int(random.uniform(0, len(neighbor) - 0.1))]
xi = np.dot(U[p], V[qi]) + np.dot(Mc[p], Fc[qi])
num += 1
xj = np.dot(U[p], V[qj]) + np.dot(Mc[p], Fc[qj])
xij = xi - xj
dU[p] += eta_2 * d(xij) * (V[qi] - V[qj])
dV[qi] += eta_2 * d(xij) * U[p]
dV[qj] -= eta_2 * d(xij) * U[p]
dMc[p] += eta_2 * d(xij) * (Fc[qi] - Fc[qj])
# update matrices
U += eta * (dU - lambda_r * U)
V += eta * (dV - lambda_r * V)
Mc += eta * (dMc - lambda_r * Mc)
# test the model after iterating all training data, and save the result
if abs(U.sum()) < e:
[F1, NDCG] = test_SPLR(U, V, Mc, Fc)
if F1[0] > Fmax:
Fmax = F1[0]
print Fmax, 'F1: ', F1, ' ', 'NDCG1: ', NDCG
save_result('iteration ' + str(ep + 1), F1, NDCG, path_excel)
else:
break
if abs(U.sum()) < e:
return 0
else:
return 1
def save_parameter():
# save parameters into excel file
dataset_list = ['all', '_Women', '_Men', '_CLothes', '_Shoes', '_Jewelry']
excel = xlwt.Workbook()
table = excel.add_sheet('A Test Sheet')
table.write(0, 0, 'model')
table.write(0, 2, 'extension_CNN')
table.write(1, 0, 'dataset')
table.write(1, 2, dataset_list[dataset])
table.write(2, 0, 'eta')
table.write(2, 2, eta)
table.write(2, 4, 'eta1')
table.write(2, 6, eta_1)
table.write(2, 8, 'eta2')
table.write(2, 10, eta_2)
table.write(3, 0, 'K0')
table.write(3, 2, K0)
table.write(4, 0, 'top_k')
for i in range(len(top_k)):
table.write(4, 2 + i, top_k[i])
table.write(5, 0, 'batch_size_train')
table.write(5, 2, batch_size_train)
table.write(6, 0, 'batch_size_test')
table.write(6, 2, batch_size_test)
table.write(7, 0, 'lambda_r')
table.write(7, 2, lambda_r)
table.write(8, 0, 'vali_test')
table.write(8, 2, vali_test)
table.write(9, 0, 'epoch')
table.write(9, 2, epoch)
table.write(17, 0, ' ')
excel.save(path_excel)
def print_parameter():
# print parameters
print 'model', 'extension_CNN'
print 'dataset', dataset
print 'eta', eta, ' eta1', eta_1, ' eta2', eta_2
print 'K0', K0,
print 'top_k', top_k
print 'batch_size_train', batch_size_train
print 'batch_size_test', batch_size_test
print 'lambda_r:', lambda_r
print 'vali_test', vali_test
print 'epoch', epoch
print
'''*************************main****************************'''
'''*************************main****************************'''
for i in range(1):
# dataset list
dataset_list = ['', '_Women', '_Men', '_CLothes', '_Shoes', '_Jewelry']
# load data
[train_data, train_data_aux, validate_data, test_data, P, Q] = readdata(dataset_list[dataset])
# load feature
Fc = get_feature_cnn(dataset_list[dataset])
Kc = len(Fc[0])
# select validate or test dataset
if vali_test == 0:
Test = validate_data
else:
Test = test_data
# load clusters
graph_cluster_path = 'E:\dataset\cluster\graph_cluster' + dataset_list[dataset] + '.json'
CNN_cluster_path = 'E:\dataset\cluster\CNN_cluster' + dataset_list[dataset] + '.json'
f = open(graph_cluster_path, 'r')
line = f.readline()
[graph_cluster_list, graph_cluster_dic] = json.loads(line)
f.close()
f = open(CNN_cluster_path, 'r')
line = f.readline()
[CNN_cluster_list, CNN_cluster_dic] = json.loads(line)
f.close()
for j in range(1):
path_excel = 'E:\\experiment_result\\' + dataset_list[dataset] + '_extension0CNN_' + str(int(time.time())) + str(int(random.uniform(100,900))) + '.xls'
save_parameter()
print_parameter()
train_SPLR(eta)