diff --git a/README.md b/README.md index e1d22ad..5754c9c 100644 --- a/README.md +++ b/README.md @@ -55,7 +55,7 @@ The papers listed here may be not from top publications, some of them even are n but are all interesting papers related to time-series imputation that deserve reading to researchers and practitioners who are interested in this field. -### Year 2024 +### `Year 2024` [ICML] **BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Functional Decomposition** [[paper](https://arxiv.org/abs/2308.14906)] @@ -65,7 +65,7 @@ researchers and practitioners who are interested in this field. [[official code](https://github.com/Chemgyu/TimeCIB)] -### Year 2023 +### `Year 2023` [ICLR] **Multivariate Time-series Imputation with Disentangled Temporal Representations** [[paper](https://openreview.net/forum?id=rdjeCNUS6TG)] @@ -121,7 +121,7 @@ researchers and practitioners who are interested in this field. [[paper](https://dl.acm.org/doi/abs/10.1145/3583780.3614840)] -### Year 2022 +### `Year 2022` [ICLR] **Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks** [[paper](https://arxiv.org/abs/2108.00298)] @@ -138,7 +138,7 @@ researchers and practitioners who are interested in this field. [[paper](https://ojs.aaai.org/index.php/AAAI/article/view/21189)] -### Year 2021 +### `Year 2021` [NeurIPS] **CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation** [[paper](https://openreview.net/forum?id=VzuIzbRDrum)] @@ -154,7 +154,7 @@ researchers and practitioners who are interested in this field. [[paper](https://arxiv.org/abs/2209.10801)] -### Year 2020 +### `Year 2020` [AISTATS] **GP-VAE: Deep Probabilistic Time Series Imputation** [[paper](https://arxiv.org/abs/1907.04155)] @@ -170,7 +170,7 @@ researchers and practitioners who are interested in this field. [[paper](https://drive.google.com/file/d/1AkWlqjYJ1PNgnu5apOx2dow_vgmqViQG/view)] -### Year 2019 +### `Year 2019` [NeurIPS] **NAOMI: Non-Autoregressive Multiresolution Sequence Imputation** [[paper](https://arxiv.org/abs/1901.10946)] @@ -185,7 +185,7 @@ researchers and practitioners who are interested in this field. [[official code](https://github.com/tomstream/STI)] -### Year 2018 +### `Year 2018` [NeurIPS] **BRITS: Bidirectional Recurrent Imputation for Time Series** [[paper](https://arxiv.org/abs/1805.10572)] @@ -200,14 +200,14 @@ researchers and practitioners who are interested in this field. [[official code](https://github.com/Luoyonghong/Multivariate-Time-Series-Imputation-with-Generative-Adversarial-Networks)] -### Year 2017 +### `Year 2017` [IEEE Transactions on Biomedical Engineering] **Estimating Missing Data in Temporal Data Streams Using Multi-Directional Recurrent Neural Networks** [[paper](https://arxiv.org/abs/1711.08742)] [[official code](https://github.com/jsyoon0823/MRNN)] -### Year 2016 +### `Year 2016` [IJCAI] **ST-MVL: Filling Missing Values in Geo-sensory Time Series Data** [[paper](https://www.ijcai.org/Proceedings/16/Papers/384.pdf)] diff --git a/benchmark_code/PyPOTS_tuning_configs/FiLM/FiLM_PeMS_tuning_space.json b/benchmark_code/PyPOTS_tuning_configs/FiLM/FiLM_PeMS_tuning_space.json index 513fd49..41043f5 100644 --- a/benchmark_code/PyPOTS_tuning_configs/FiLM/FiLM_PeMS_tuning_space.json +++ b/benchmark_code/PyPOTS_tuning_configs/FiLM/FiLM_PeMS_tuning_space.json @@ -3,8 +3,9 @@ "n_features": {"_type":"choice","_value":[862]}, "epochs": {"_type":"choice","_value":[100]}, "patience": {"_type":"choice","_value":[10]}, - "window_size": {"_type":"choice","_value":}, - "multiscale": {"_type":"choice","_value":}, + "window_size": {"_type":"choice","_value": [[128],[256]]}, + "multiscale": {"_type":"choice","_value":[1,2,4]}, + "modes1": {"_type":"choice","_value":[32,64,128]}, "dropout": {"_type":"choice","_value":[0.1,0.2,0.3,0.4,0.5]}, "model_type": {"_type":"choice","_value":[0,1,2]}, "d_model": {"_type":"choice","_value":[64,128,256,512,1024]},