-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
395 lines (308 loc) · 14.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import numpy as np
import torch
from torch import nn
from torchvision import models
import torch.nn.functional as F
import os
class Params():
def __init__(self):
self.n_epochs = 300
self.lr = 3e-4
self.weight_decay = 0.001
self.load_weights = 1
self.root = '/content/drive/My Drive/A6/ckpts' #root to save model
self.model_name = 'model.pt.172'
self.wts_path = os.path.join(self.root, self.model_name)
class Images(object):
def __init__(self, subset, batch=128, shuffle=True):
root_dir = '/content/drive/My Drive/A6/MNISTDD_train_valid'
if subset=='train':
images = np.load(os.path.join(root_dir, "train_X.npy")) #[55000, 4096] training images
classes = np.load(os.path.join(root_dir, "train_Y.npy")) #[55000, 2]
bboxes = np.load(os.path.join(root_dir, "train_bboxes.npy")) #[55000, 2, 4]
else:
images = np.load(os.path.join(root_dir, "valid_X.npy")) #[55000, 4096] training images
classes = np.load(os.path.join(root_dir, "valid_Y.npy")) #[55000, 2]
bboxes = np.load(os.path.join(root_dir, "valid_bboxes.npy")) #[55000, 2, 4]
self._images = images
self.images = self._images
self._classes = classes
self.classes = self._classes
self._bboxes = bboxes
self.bboxes = self._bboxes
self.batch_size = batch
self.sample_num = len(self.images)
self.shuffle = shuffle
if self.shuffle:
self.shuffle_samples()
self.batch_pointer = 0
def shuffle_samples(self):
image_indices = np.random.permutation(np.arange(self.sample_num))
self.images = self._images[image_indices]
self.classes = self._classes[image_indices]
self.bboxes = self._bboxes[image_indices]
def get_next_batch(self):
total_remained_samples = self.sample_num - self.batch_pointer
if total_remained_samples >= self.batch_size:
image_batch = self.images[self.batch_pointer:self.batch_pointer+self.batch_size] # array slicing from batch pointer to batch pointer+batchsize
classes_batch = self.classes[self.batch_pointer:self.batch_pointer+self.batch_size]
bboxes_batch = self.bboxes[self.batch_pointer:self.batch_pointer+self.batch_size]
self.batch_pointer += self.batch_size
else:
image_batch1 = self.images[self.batch_pointer:self.sample_num]
classes_batch1 = self.classes[self.batch_pointer:self.sample_num]
bboxes_batch1 = self.bboxes[self.batch_pointer:self.sample_num]
if self.shuffle:
self.shuffle_samples()
image_batch2 = self.images[0:self.batch_size-total_remained_samples]
classes_batch2 = self.classes[0:self.batch_size-total_remained_samples]
bboxes_batch2 = self.bboxes[0:self.batch_size-total_remained_samples]
image_batch = np.vstack((image_batch1, image_batch2))
classes_batch = np.vstack((classes_batch1, classes_batch2))
bboxes_batch = np.vstack((bboxes_batch1, bboxes_batch2))
self.batch_pointer = self.batch_size - total_remained_samples
return image_batch, classes_batch, bboxes_batch
class VGG(nn.Module):
def __init__(self, classes=10, digits=2, boxes=4):
super(VGG, self).__init__()
self.conv1_1 = nn.Conv2d(1, 64, kernel_size=3, padding=1) # stride = 1, by default
self.batch1_1 = nn.BatchNorm2d(64)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.batch1_2 = nn.BatchNorm2d(64)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) #32*32
self.conv2_1 = nn.Conv2d(64, 256, kernel_size=3, padding=1)
self.batch2_1 = nn.BatchNorm2d(256)
self.conv2_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.batch2_2 = nn.BatchNorm2d(256)
self.pool2 = nn.MaxPool2d(kernel_size=4, stride=4) #16*16
self.conv4_1 = nn.Conv2d(256, 1024, kernel_size=3, padding=1)
self.batch4_1 = nn.BatchNorm2d(1024)
self.conv4_2 = nn.Conv2d(1024, 1024, kernel_size=3, padding=1)
self.batch4_2 = nn.BatchNorm2d(1024)
self.conv4_3 = nn.Conv2d(1024, 1024, kernel_size=3, padding=1)
self.batch4_3 = nn.BatchNorm2d(1024)
self.pool4 = nn.MaxPool2d(kernel_size=8, stride=8) #2*2
self.fc7 = nn.Linear(1024, 512)
self.batch7 = nn.BatchNorm1d(512)
self.fc8 = nn.Linear(512, 256)
self.batch8 = nn.BatchNorm1d(256)
self.fc9 = nn.Linear(256, 148)
self.fc10 = nn.Linear(148, 20)
self.drop1 = nn.Dropout(p=0.05)
self.drop2 = nn.Dropout(p=0.01)
def forward(self, x):
x = x.reshape(len(x), 1, 64, 64)
x = F.relu(self.batch1_1(self.conv1_1(x)))
x = F.relu(self.batch1_2(self.conv1_2(x)))
# x = F.relu(self.batch1_3(self.conv1_3(x)))
x = self.pool1(x)
x = F.relu(self.batch2_1(self.conv2_1(x)))
x = F.relu(self.batch2_2(self.conv2_2(x)))
x = self.pool2(x)
x = F.relu(self.batch4_1(self.conv4_1(x)))
x = F.relu(self.batch4_2(self.conv4_2(x)))
x = F.relu(self.batch4_3(self.conv4_3(x)))
x = self.pool4(x)
x = x.view(x.size(0), -1)
x = self.drop1(F.relu(self.batch7(self.fc7(x))))
x = self.drop2(F.relu(self.batch8(self.fc8(x))))
x_bbox = self.fc9(x)
x_classes= self.fc10(x_bbox)
bbox = x_bbox
cls = x_classes
return cls, bbox
def classify_and_detect(images):
"""
:param np.ndarray images: N x 4096 array containing N 64x64 images flattened into vectors
:return: np.ndarray, np.ndarray
"""
N = images.shape[0] #[5000,4096] only valid is passed in
pred_class = np.empty((N, 2), dtype=np.int32)
pred_bboxes = np.empty((N, 2, 4), dtype=np.float64)
use_cuda = 1
if use_cuda and torch.cuda.is_available():
device = torch.device("cuda")
print('Training on GPU: {}'.format(torch.cuda.get_device_name(0)))
else:
device = torch.device("cpu")
print('Training on CPU')
param = Params()
train = Images('train')
valid = Images('valid', shuffle=False)
model = VGG().to(device)
def compute_iou(b_pred, b_gt):
"""
:param b_pred: predicted bounding boxes, shape=(n,2,4)
:param b_gt: ground truth bounding boxes, shape=(n,2,4)
:return:
"""
n = np.shape(b_gt)[0]
L_pred = np.zeros((64, 64))
L_gt = np.zeros((64, 64))
iou = 0.0
for i in range(n):
for b in range(2):
rr, cc = polygon([b_pred[i, b, 0], b_pred[i, b, 0], b_pred[i, b, 2], b_pred[i, b, 2]],
[b_pred[i, b, 1], b_pred[i, b, 3], b_pred[i, b, 3], b_pred[i, b, 1]], [64, 64])
L_pred[rr, cc] = 1
rr, cc = polygon([b_gt[i, b, 0], b_gt[i, b, 0], b_gt[i, b, 2], b_gt[i, b, 2]],
[b_gt[i, b, 1], b_gt[i, b, 3], b_gt[i, b, 3], b_gt[i, b, 1]], [64, 64])
L_gt[rr, cc] = 1
iou += (1.0 / (2 * n)) * (np.sum((L_pred + L_gt) == 2) / np.sum((L_pred + L_gt) >= 1))
L_pred[:, :] = 0
L_gt[:, :] = 0
return iou
def evaluation(image, classes, bboxes):
eval_batch_size = 100
pred_classes = []
pred_bboxes = []
model.eval()
bboxes_size = len(bboxes)
with torch.no_grad():
for idx in range(0, len(images), eval_batch_size):
e_idx = idx + eval_batch_size
img = image[idx:e_idx]
img = torch.FloatTensor(img).to(device)
pred_cls, pred_box = model(img)
################## pred_classes reshaping ###################
pred_cls1 = pred_cls.permute(1, -2)[0:10].permute(1, -2)
pred_cls2 = pred_cls.permute(1, -2)[10:20].permute(1, -2)
pred_cls1 = torch.argmax(pred_cls1, axis=1).reshape(eval_batch_size, 1)
pred_cls2 = torch.argmax(pred_cls2, axis=1).reshape(eval_batch_size, 1)
pred_cls1.permute(1, -2)
pred_cls2.permute(1, -2)
pred_class = torch.cat((pred_cls1, pred_cls2), 1)
pred_class = pred_class.cpu().numpy()
pred_classes += list(pred_class)
##################### pred_bboxes reshaping #########################
pred_box1 = pred_box.permute(1, -2)[0:74].permute(1, -2).reshape(eval_batch_size, 2, 37)
pred_box2 = pred_box.permute(1, -2)[74:148].permute(1, -2).reshape(eval_batch_size, 2, 37)
pred_box_1x = torch.argmax(pred_box1[:, 0, :], axis=1).reshape(eval_batch_size, 1)
pred_box_1y = torch.argmax(pred_box1[:, 1, :], axis=1).reshape(eval_batch_size, 1)
pred_box_2x = torch.argmax(pred_box2[:, 0, :], axis=1).reshape(eval_batch_size, 1)
pred_box_2y = torch.argmax(pred_box2[:, 1, :], axis=1).reshape(eval_batch_size, 1)
pred_box_1xR = pred_box_1x+28
pred_box_1yR = pred_box_1y+28
pred_box_2xR = pred_box_2x+28
pred_box_2yR = pred_box_2y+28
pred_boxes1 = torch.cat((pred_box_1x, pred_box_1y, pred_box_1xR, pred_box_1yR), 1)
pred_boxes2 = torch.cat((pred_box_2x, pred_box_2y, pred_box_2xR, pred_box_2yR), 1)
pred_boxes = torch.cat((pred_boxes1, pred_boxes2), 1).reshape(eval_batch_size, 2, 4)
pred_boxes = pred_boxes.cpu().numpy()
pred_bboxes += list(pred_boxes)
pred_classes = np.vstack(pred_classes)
pred_classes_calc = pred_classes.flatten()
classes = classes.flatten()
cls_acc = float((pred_classes_calc == classes).astype(np.int32).sum())/classes.size
pred_bboxes = np.vstack(pred_bboxes).reshape(bboxes_size, 2, 4)
iou = compute_iou(pred_bboxes, bboxes)
return pred_classes, pred_bboxes, cls_acc, iou
if param.load_weights:
print('Loading weights from: {}'.format(param.wts_path))
ckpt = torch.load(param.wts_path, map_location=device)
model.load_state_dict(ckpt['model'])
else:
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=param.lr)
print("Training...")
mean_loss = 0
steps = 0
losses = []
max_acc = 0
acc_id = 0
n_batch = int(train.sample_num/train.batch_size)
for epoch in range(param.n_epochs):
model.train()
for batch in range(n_batch):
image, classes, bboxes = train.get_next_batch()
image = torch.FloatTensor(image).to(device)
classes = torch.LongTensor(classes).squeeze().permute(1, -2).to(device)
bboxes = torch.LongTensor(bboxes).squeeze().to(device)
optimizer.zero_grad()
out_class, out_box = model(image)
class1 = classes[0].squeeze()
class2 = classes[1].squeeze()
out_class1 = out_class.permute(1, -2)[0:10].permute(1, -2)
out_class2 = out_class.permute(1, -2)[10:20].permute(1, -2)
class_loss = criterion(out_class1, class1) + criterion(out_class2, class2)
bboxes_1x = bboxes[:, 0, 0]
bboxes_1y = bboxes[:, 0, 1]
bboxes_2x = bboxes[:, 1, 0]
bboxes_2y = bboxes[:, 1, 1]
out_box_1x = out_box.permute(1, -2)[0:74].permute(1, -2).reshape(128, 2, 37)[:, 0, :]
out_box_1y = out_box.permute(1, -2)[0:74].permute(1, -2).reshape(128, 2, 37)[:, 1, :]
out_box_2x = out_box.permute(1, -2)[74:148].permute(1, -2).reshape(128, 2, 37)[:, 0, :]
out_box_2y = out_box.permute(1, -2)[74:148].permute(1, -2).reshape(128, 2, 37)[:, 1, :]
bbox_loss = criterion(out_box_1x, bboxes_1x) + criterion(out_box_1y, bboxes_1y) + criterion(out_box_2x, bboxes_2x) + criterion(out_box_2y, bboxes_2y)
loss = class_loss + bbox_loss/2
loss.backward()
optimizer.step()
_loss = loss.item()
steps += 1
mean_loss += (_loss-mean_loss)/steps
losses.append(_loss)
pred_class, pred_bboxes, cls_acc, box_acc = evaluation(valid._images, valid._classes, valid._bboxes)
max_acc = cls_acc
max_id = epoch
if epoch>250:
ckpt = {
'model':model.state_dict(),
}
torch.save(ckpt, '{}.{}'.format(param.wts_path, max_id))
print("epoch {}/{}: Test Class Acc = {:.3f}, Test BBox iou = {:.3f} max_acc = {:.3f} in epoch {}".format(
epoch+1, param.n_epochs, cls_acc, box_acc, max_acc, max_id+1))
print("Done training. Weights saved to: {}".format('model.pt'))
ckpt = {
'model':model.state_dict(),
}
torch.save(ckpt, param.wts_path)
return pred_class, pred_bboxes
print("Evaluating without Training")
pred_class, pred_bboxes, cls_acc, box_acc = evaluation(images, valid._classes, valid._bboxes)
return pred_class, pred_bboxes
import time
import numpy as np
from skimage.draw import polygon
import os
from tqdm import tqdm
def compute_classification_acc(pred, gt):
assert pred.shape == gt.shape
return (pred == gt).astype(int).sum() / gt.size
def compute_iou(b_pred, b_gt):
"""
:param b_pred: predicted bounding boxes, shape=(n,2,4)
:param b_gt: ground truth bounding boxes, shape=(n,2,4)
:return:
"""
n = np.shape(b_gt)[0]
L_pred = np.zeros((64, 64))
L_gt = np.zeros((64, 64))
iou = 0.0
for i in range(n):
for b in range(2):
rr, cc = polygon([b_pred[i, b, 0], b_pred[i, b, 0], b_pred[i, b, 2], b_pred[i, b, 2]],
[b_pred[i, b, 1], b_pred[i, b, 3], b_pred[i, b, 3], b_pred[i, b, 1]], [64, 64])
L_pred[rr, cc] = 1
rr, cc = polygon([b_gt[i, b, 0], b_gt[i, b, 0], b_gt[i, b, 2], b_gt[i, b, 2]],
[b_gt[i, b, 1], b_gt[i, b, 3], b_gt[i, b, 3], b_gt[i, b, 1]], [64, 64])
L_gt[rr, cc] = 1
iou += (1.0 / (2 * n)) * (np.sum((L_pred + L_gt) == 2) / np.sum((L_pred + L_gt) >= 1))
L_pred[:, :] = 0
L_gt[:, :] = 0
return iou
def main():
prefix = "valid"
images = np.load(os.path.join('/content/drive/My Drive/A6/MNISTDD_train_valid', prefix + "_X.npy")) # 2D matrix with dimension [N,4096] train: [55000,4096] valid: [5000,4096] (flattened images)
start_t = time.time()
pred_class, pred_bboxes = classify_and_detect(images)
end_t = time.time()
gt_class = np.load(os.path.join('/content/drive/My Drive/A6/MNISTDD_train_valid', prefix + "_Y.npy")) # 2D matrix with dimension [N,2] train: [55000,2] valid: [5000,2] (2 labels of int)
gt_bboxes = np.load(os.path.join('/content/drive/My Drive/A6/MNISTDD_train_valid', prefix + "_bboxes.npy")) # 2D matrix with dimension [N,2,4] train: [55000,2,4] valid: [5000,2,4] (2 numbers, 4 loc ind)
acc = compute_classification_acc(pred_class, gt_class)
iou = compute_iou(pred_bboxes, gt_bboxes)
time_taken = end_t - start_t
print(f"Classification Acc: {acc}")
print(f"Detection IOU: {iou}")
print(f"Test time: {time_taken}")
if __name__ == '__main__':
main()