-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_articles_irid.xml
1 lines (1 loc) · 518 KB
/
all_articles_irid.xml
1
<?xml version="1.0" encoding="UTF-8"?><response><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Body composition analysis <i>via</i> spatially resolved NIR spectroscopy with multifrequency bioimpedance precision</dc:title><dc:creator>Shirshin Evgeny<irid>1074742</irid></dc:creator><dc:creator>Yakimov Boris<irid>18555593</irid></dc:creator><dc:creator>Davydov Denis<irid>141182920</irid></dc:creator><dc:creator>Baev Alexey<irid>448288424</irid></dc:creator><dc:creator>Budylin Gleb<irid>2346623</irid></dc:creator><dc:creator>Fadeev Nikolay<irid>553481880</irid></dc:creator><dc:creator>Urusova Liliya<irid></irid></dc:creator><dc:creator>Pachuashvili Nano<irid></irid></dc:creator><dc:creator>Vasyukova Olga<irid></irid></dc:creator><dc:creator>Mokrysheva Natalia<irid></irid></dc:creator><prism:publicationName>Analytical Methods</prism:publicationName><prism:issn>1759-9660</prism:issn><journalRanking type="ImpactFactor" year="2022">3.1</journalRanking><prism:doi>10.1039/d3ay01901b</prism:doi> <dc:publisher>Royal Society of Chemistry</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>16</prism:volume><prism:number>2</prism:number><prism:startingPage>175</prism:startingPage><prism:endingPage>178</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/631611292/</prism:url><prism:ID>631611292/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-20 17:08:20</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Near-infrared spectroscopy (NIRS) is often criticized due to its insufficient accuracy in determining body composition compared to the gold standard methods. In this work, we show that the use of multiple source–detector distances, as well as the simultaneous use of physiological and optical features, can significantly improve the accuracy of determination of fat and lean mass percentage in the human body using NIR spectroscopy. The study performed on the n = 292 cohort revealed the mean absolute errors of 3.5% for fat content and 3.3% for soft lean mass percentage prediction (r = 0.93) using the multifrequency bioimpedance analysis (BIA) as a reference. Hence, NIRS can serve as an independent reliable method for body composition analysis with precision close to that of advanced multifrequency BIA.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Terahertz ring beam independent on ω–2ω phase offset in the course of two-color femtosecond filamentation</dc:title><dc:creator>Nikolaeva I.A.<irid>56757026</irid></dc:creator><dc:creator>Vrublevskaya N.R.<irid>412384647</irid></dc:creator><dc:creator>Rizaev G.E.<irid></irid></dc:creator><dc:creator>Pushkarev D.V.<irid>22527799</irid></dc:creator><dc:creator>Mokrousova D.V.<irid></irid></dc:creator><dc:creator>Shipilo D.E.<irid>12001711</irid></dc:creator><dc:creator>Panov N.A.<irid>387487</irid></dc:creator><dc:creator>Seleznev L.V.<irid></irid></dc:creator><dc:creator>Ionin A.A.<irid></irid></dc:creator><dc:creator>Kosareva O.G.<irid>394701</irid></dc:creator><dc:creator>Savel'ev A.B.<irid>386630</irid></dc:creator><prism:publicationName>Applied Physics Letters</prism:publicationName><prism:issn>0003-6951</prism:issn><journalRanking type="ImpactFactor" year="2022">4</journalRanking><prism:doi>10.1063/5.0185565</prism:doi> <dc:publisher>AIP Publishing</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>124</prism:volume><prism:number>5</prism:number><prism:url>http://istina.msu.ru/publications/article/625883768/</prism:url><prism:ID>625883768/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-31 11:26:33</created> <attachments><url>https://istina.msu.ru/download/626446533/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Investigation of the Flaring Activity of BL Lac in July–November 2021</dc:title><dc:creator>Ugol’kova L.S.<irid>2213002</irid></dc:creator><dc:creator>Pshirkov M.S.<irid>475185</irid></dc:creator><dc:creator>Goranskij V.P.<irid>2037693</irid></dc:creator><dc:creator>Ikonnikova N.P.<irid>415010</irid></dc:creator><dc:creator>Safonov B.S.<irid>1060317</irid></dc:creator><dc:creator>Tatarnikov A.M.<irid>383508</irid></dc:creator><dc:creator>Shimanovskaya E.V.<irid>1085477</irid></dc:creator><dc:creator>Burlak M.A.<irid>415166</irid></dc:creator><dc:creator>Afonina M.D.<irid>396082868</irid></dc:creator><prism:publicationName>Astronomy Letters</prism:publicationName><prism:issn>1063-7737</prism:issn><journalRanking type="ImpactFactor" year="2022">.9</journalRanking><prism:doi>10.1134/S1063773723050067</prism:doi> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>49</prism:volume><prism:number>5</prism:number><prism:startingPage>216</prism:startingPage><prism:endingPage>228</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/595275780/</prism:url><prism:ID>595275780/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-19 13:52:39</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The source BL Lac exhibited an enhanced activity fromAugust 2020 to July 2022. This activitypeaked in July–August 2021. In this period the source reached historic brightness maxima in variousenergy ranges. Observations of this nonstandard maximumwere carried out by the SAI staff of the CrimeanStation of SAI and with the telescopes of the Caucasus Mountain Observatory (CMO SAI MSU). Opticaland near-infrared photometric data as well as optical polarimetric data were obtained. When investigatingthe correlation between the optical and gamma-ray fluxes and between the optical and infrared fluxes, itshigh degree with an almost zero lag was confirmed—thismeans that the emission regions spatially coincideor are very close together. The degree of linear polarization in the investigated period changed in a widerange, reaching 20%, with an anticorrelation between the degree of linear polarization and the brightnessof the object having been observed. A similar pattern of variation was also observed in the preceding flaresof this object. The changes in the electric vector position angle (EVPA) show a dependence on the rate ofchange of the object’s brightness. The EVPA changed greatly during flares and slowly at the times of aslow change in the intensity.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Extreme Universe through the eyes of MASTER Global Robotic Net</dc:title><dc:creator>Lipunov V.M.<irid>381295</irid></dc:creator><dc:creator>Kornilov V.G.<irid>385158</irid></dc:creator><dc:creator>Zhirkov K.K.<irid>229519942</irid></dc:creator><dc:creator>Balanutsa P.V.<irid>383572</irid></dc:creator><dc:creator>Antipov G.A.<irid>421264532</irid></dc:creator><dc:creator>Kuznetsov A.S.<irid>380889</irid></dc:creator><dc:creator>Panchenko I.E.<irid>566538906</irid></dc:creator><dc:creator>Gorbovskoy E.S.<irid>395691</irid></dc:creator><dc:creator>Tiurina N.V.<irid>395689</irid></dc:creator><dc:creator>Vlasenko D.M.<irid>12002852</irid></dc:creator><dc:creator>Chasovnikov A.R.<irid>225342874</irid></dc:creator><dc:creator>Topolev V.V.<irid>226126401</irid></dc:creator><dc:creator>Buckley D.A.H<irid>39672471</irid></dc:creator><dc:creator>Francile C.<irid>457130604</irid></dc:creator><dc:creator>Podesta R.<irid>29490931</irid></dc:creator><dc:creator>Podesta F.<irid>29316672</irid></dc:creator><dc:creator>Rebolo R.<irid>29316670</irid></dc:creator><dc:creator>Sierra-Ricart M.<irid>2952036</irid></dc:creator><dc:creator>Budnev N.M.<irid></irid></dc:creator><dc:creator>Gress O.A.<irid>164879139</irid></dc:creator><dc:creator>Tlatov A.G.<irid>72855056</irid></dc:creator><dc:creator>Kechin Ya<irid>292697687</irid></dc:creator><dc:creator>Sosnovskij A.A.<irid>2013981</irid></dc:creator><dc:creator>Gabovich A.V.<irid>163621598</irid></dc:creator><dc:creator>Yurkov V.V.<irid></irid></dc:creator><dc:creator>Senik V.A.<irid>594086483</irid></dc:creator><dc:creator>Tselik Yu<irid>104268003</irid></dc:creator><dc:creator>Pozdnyakov A.<irid>225342797</irid></dc:creator><dc:creator>Gulyaev M.A.<irid>519258980</irid></dc:creator><dc:creator>Cheryasov D.V.<irid>8091165</irid></dc:creator><dc:creator>Patino V.<irid>483697857</irid></dc:creator><dc:creator>Martinez J.<irid>51907651</irid></dc:creator><dc:creator>Corella A.R.<irid>524010715</irid></dc:creator><dc:creator>Rodriguez L.H.<irid>520171161</irid></dc:creator><dc:creator>Gorbunov I.A.<irid>8467568</irid></dc:creator><dc:creator>Krylov A.V.<irid>395688</irid></dc:creator><dc:creator>Svertilov S.I.<irid></irid></dc:creator><dc:creator>Iyudin A.F.<irid>1096402</irid></dc:creator><dc:creator>Yashin I.V.<irid>538034</irid></dc:creator><dc:creator>Vladimirov V.V.<irid></irid></dc:creator><dc:creator>Rudenko B.A.<irid></irid></dc:creator><dc:creator>Kuvshinov D.A.<irid>395692</irid></dc:creator><dc:creator>Yudin A.<irid>523140190</irid></dc:creator><dc:creator>Chazov V.V.<irid>1355962</irid></dc:creator><dc:creator>Zimnukhov D.S.<irid>70778963</irid></dc:creator><prism:publicationName>Astronomy Reports</prism:publicationName><prism:issn>1063-7729</prism:issn><journalRanking type="ImpactFactor" year="2022">1</journalRanking> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>67</prism:volume><prism:number>12</prism:number><prism:startingPage>1</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/612147968/</prism:url><prism:ID>612147968/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-17 19:30:41</created> <attachments><url>https://istina.msu.ru/download/612148090/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>This paper considers last highlights in synchronous and follow-up optical observationsof high energy astrophysical phenomena by MASTER Global Robotic Net.Such extreme Universe sources includes gamma-ray bursts, gravitational waveevents, detected by LIGO/Virgo, fast radio bursts, high energy neutrino sources andothers. Some of the neutrinos detected by ground-based facilities owe their birthsto supermassive black holes - blazars, which are in a special anxious state with highstatistical reliability. We discovered the effect of a rapid decrease in the brightnessof the blazar PKS 0735+17 at the time of the multiple detection of the high-energyneutrino event IceCube-211208A. This decrease in brightness within several hourswas detected with a high confidence (SNR 10) in comparison with a multi-day brighteningstate of the blazar, which was accompanied not only by a maximum increasein the average brightness, but also by an increase in the amplitude of its brightnessfluctuations. Additionally, we analyzed all cases of successful observation of blazarsaround neutrino events and obtained statistically reliable indications of the relationshipbetween neutrino events and optical activity of blazars in the doubled error boxat the 4.2 σ level.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Activity Cycles of a Single G5 III–IV Giant HD 199178</dc:title><dc:creator>Savanov I.S.<irid>329604469</irid></dc:creator><dc:creator>Tarasenkov A.N.<irid>536967523</irid></dc:creator><dc:creator>Samus N.N.<irid>2302839</irid></dc:creator><dc:creator>Dmitrienko E.S.<irid>387346</irid></dc:creator><prism:publicationName>Astronomy Reports</prism:publicationName><prism:issn>1063-7729</prism:issn><journalRanking type="ImpactFactor" year="2022">1</journalRanking><prism:doi>10.1134/S1063772923080103</prism:doi> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>67</prism:volume><prism:number>10</prism:number><prism:startingPage>991</prism:startingPage><prism:endingPage>998</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/616186478/</prism:url><prism:ID>616186478/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-01 17:15:38</created> <attachments><url>https://istina.msu.ru/download/617279044/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>We obtained a unique series of photometric data for more than a hundred years for a rapidly rotating single G5 III–IV giant HD 199178 (V1794 Cyg), belonging to FK Com type stars. The analysis of the longterm variation of the activity of this star in the filter is based on all measurements available in literary sources. To evaluate the brightness of HD 199178 in the era preceding photoelectric and CCD-observations, the measurements of photographic plates from the SAI MSU archive were shot at the Krasnopresnenskaya Observatory of Moscow State University in Moscow (4 records shot from 1898 to 1903, and 41 records for the period from 1935 to 1958) were performed. As a result, a total of 2142 assessments of the brightness of the star in the filter were received. They have a unique duration of 118.3 yr and cover the time interval from 1898 to July 2016. Evidence was found of the existence of long-term cycles of photometric variability lasting for about 25‒60 years. We put forward an assumption on existence of possible activity cycles of 2000, 3165, 5050, 9000, and 21600d (respectively, 5.5, 8.7, 16.6, 24.7, and 59.2 years). The results are compared with other estimates of activity cycles in HD 199178. The most reliable should be recognizing the existence of a cycle lasting 8.7‒9 years. It was found that in order to combine data into a single array, the convertation of magnitudes into magnitudes using the average value of the color index (B–V) is not possible due to the changes (including cyclic) of color index (B–V) over time.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Extreme Universe through the Eyes of Master Global Robotic Net</dc:title><dc:creator>Lipunov V.M.<irid>381295</irid></dc:creator><dc:creator>Kornilov V.G.<irid>385158</irid></dc:creator><dc:creator>Zhirkov K.K.<irid>229519942</irid></dc:creator><dc:creator>Balanutsa P.V.<irid>383572</irid></dc:creator><dc:creator>Antipov G.A.<irid>421264532</irid></dc:creator><dc:creator>Kuznetsov A.S.<irid>380889</irid></dc:creator><dc:creator>Panchenko I.E.<irid>612735502</irid></dc:creator><dc:creator>Gorbovskoy E.S.<irid>395691</irid></dc:creator><dc:creator>Tiurina N.V.<irid>395689</irid></dc:creator><dc:creator>Vlasenkoa D.M.<irid>12002852</irid></dc:creator><dc:creator>Chasovnikov A.R.<irid>225342874</irid></dc:creator><dc:creator>Topolev V.V.<irid>226126401</irid></dc:creator><dc:creator>Sosnovskij A.A.<irid>629344769</irid></dc:creator><dc:creator>Buckley D.A.H<irid>39672471</irid></dc:creator><dc:creator>Francile C.<irid>457130604</irid></dc:creator><dc:creator>Podesta R.<irid>29490931</irid></dc:creator><dc:creator>Podesta F.<irid>162637912</irid></dc:creator><dc:creator>Rebolo R.<irid>29316670</irid></dc:creator><dc:creator>Sierra-Ricart M.<irid>2952036</irid></dc:creator><dc:creator>Budnev N.M.<irid>21422597</irid></dc:creator><dc:creator>Gress O.A.<irid>164879139</irid></dc:creator><dc:creator>Tlatovg A.G.<irid>6437835</irid></dc:creator><dc:creator>Kechin Ya<irid>292697687</irid></dc:creator><dc:creator>Gabovich A.V.<irid>163621598</irid></dc:creator><dc:creator>Yurkov V.V.<irid>2302078</irid></dc:creator><dc:creator>Senik V.A.<irid>594086483</irid></dc:creator><dc:creator>Tselik Yu<irid>626733155</irid></dc:creator><dc:creator>Pozdnyakov A.<irid>225342797</irid></dc:creator><dc:creator>Gulyaev M.A.<irid>519258980</irid></dc:creator><dc:creator>Cheryasov D.V.<irid>8091165</irid></dc:creator><dc:creator>Carrasco L.<irid>1738426</irid></dc:creator><dc:creator>Valdes J.R.<irid>1086399</irid></dc:creator><dc:creator>Chavushyan V.<irid>6923707</irid></dc:creator><dc:creator>Patino V.<irid>483697857</irid></dc:creator><dc:creator>Martinez J.<irid>51907651</irid></dc:creator><dc:creator>Corell R.<irid>174850791</irid></dc:creator><dc:creator>Rodriguez L.H.<irid>520171161</irid></dc:creator><dc:creator>Gorbunov I.A.<irid>8467568</irid></dc:creator><dc:creator>Krylov A.V.<irid>395688</irid></dc:creator><dc:creator>Svertilov S.I.<irid>1308611</irid></dc:creator><dc:creator>Iyudin A.F.<irid>1096402</irid></dc:creator><dc:creator>Yashin I.V.<irid>538034</irid></dc:creator><dc:creator>Vladimirov V.V.<irid>12079111</irid></dc:creator><dc:creator>Rudenko B.A.<irid>520466591</irid></dc:creator><dc:creator>Kuvshinov D.A.<irid>395692</irid></dc:creator><dc:creator>Yudin A.<irid>523140190</irid></dc:creator><dc:creator>Chazov V.V.<irid>1355962</irid></dc:creator><dc:creator>Zimnukhov D.S.<irid>70778963</irid></dc:creator><prism:publicationName>Astronomy Reports</prism:publicationName><prism:issn>1063-7729</prism:issn><journalRanking type="ImpactFactor" year="2022">1</journalRanking><prism:doi>10.1134/S1063772923140123</prism:doi> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>67</prism:volume><prism:number>S2</prism:number><prism:startingPage>S140</prism:startingPage><prism:endingPage>S150</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/629344775/</prism:url><prism:ID>629344775/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-12 16:04:35</created> <attachments><url>https://istina.msu.ru/download/630210261/</url><url>https://istina.msu.ru/download/629344957/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>10.1134/S1063772923140123Abstract—This paper considers latest highlights in simultaneous and follow-up optical observations of highenergy astrophysical phenomena by MASTER Global Robotic Net. Such extreme Universe sources includesgamma-ray bursts, gravitational wave events, detected by LIGO/Virgo, fast radio bursts, high energy neutrinosources and others. Some of the neutrinos detected by ground-based facilities owe their births to supermassiveblack holes – blazars, which are in a special anxious state with high statistical reliability. We discovered theeffect of a rapid decrease in the brightness of the blazar PKS 0735+17 at the time of the multiple detection ofthe high-energy neutrino event IceCube-211208A. This decrease in brightness within several hours wasdetected with a high confidence (SNR 10) in comparison with a multi-day brightening state of the blazar,which was accompanied not only by a maximum increase in the average brightness, but also by an increase inthe amplitude of its brightness fluctuations. Additionally, we analyzed all cases of successful observation ofblazars around neutrino events and obtained statistically reliable indications of the relationship between neu-trino events and optical activity of blazars in the doubled error box at the 4.2 leve</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Three-stage Collapse of the Long Gamma-Ray Burst from GRB 160625B Prompt Multiwavelength Observations</dc:title><dc:creator>Lipunov V.M.<irid>381295</irid></dc:creator><dc:creator>Sadovnichy V.A.<irid>211699</irid></dc:creator><dc:creator>Panasyuk M.I.<irid>540593</irid></dc:creator><dc:creator>Yashin I.V.<irid>538034</irid></dc:creator><dc:creator>Svertilov S.I.<irid>1308611</irid></dc:creator><dc:creator>Simakov S.G.<irid>2514191</irid></dc:creator><dc:creator>Svinkin D.<irid>92404154</irid></dc:creator><dc:creator>Gorbovskoy E.<irid>395691</irid></dc:creator><dc:creator>Lipunova G.V.<irid>381210</irid></dc:creator><dc:creator>Kornilov V.G.<irid>385158</irid></dc:creator><dc:creator>Frederiks D.<irid>2259432</irid></dc:creator><dc:creator>Topolev V.<irid>226126401</irid></dc:creator><dc:creator>Rebolo R.<irid>29316670</irid></dc:creator><dc:creator>Serra M.<irid>12054093</irid></dc:creator><dc:creator>Tiurina N.<irid>395689</irid></dc:creator><dc:creator>Minkina E.<irid>239481347</irid></dc:creator><dc:creator>Bogomolov V.V.<irid>1520867</irid></dc:creator><dc:creator>Bogomolov A.V.<irid>585977</irid></dc:creator><dc:creator>Iyudin A.F.<irid>1096402</irid></dc:creator><dc:creator>Chasovnikov A.<irid>225342874</irid></dc:creator><dc:creator>Gabovich A.<irid>163621598</irid></dc:creator><dc:creator>Tsvetkova A.<irid>448022217</irid></dc:creator><dc:creator>Budnev N.M.<irid>21422597</irid></dc:creator><dc:creator>Gress O.A.<irid>164879139</irid></dc:creator><dc:creator>Antipov G.<irid>421264532</irid></dc:creator><dc:creator>Gorbunov I.<irid>8467568</irid></dc:creator><dc:creator>Vlasenko D.<irid>12002852</irid></dc:creator><dc:creator>Balanutsa P.<irid>383572</irid></dc:creator><dc:creator>Podesta R.<irid>29490931</irid></dc:creator><dc:creator>Zhirkov K.<irid>229519942</irid></dc:creator><dc:creator>Kuznetsov A.<irid>380889</irid></dc:creator><dc:creator>Vladimirov V.<irid>12079111</irid></dc:creator><dc:creator>Podesta F.<irid>162637912</irid></dc:creator><dc:creator>Francile C.<irid>71801727</irid></dc:creator><dc:creator>Sergienko Yu<irid>262008755</irid></dc:creator><dc:creator>Tlatov0 A.<irid>72855056</irid></dc:creator><dc:creator>Ershova O.<irid>523140009</irid></dc:creator><dc:creator>Cheryasov D.<irid>8091165</irid></dc:creator><dc:creator>Yurkov V.<irid>22477398</irid></dc:creator><dc:creator>Krylov A.V.<irid>395688</irid></dc:creator><prism:publicationName>Astrophysical Journal</prism:publicationName><prism:issn>0004-637X</prism:issn><journalRanking type="ImpactFactor" year="2022">4.9</journalRanking><prism:doi>10.3847/1538-4357/ac9307</prism:doi> <dc:publisher>University of Chicago Press</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>943</prism:volume><prism:startingPage>181</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/534215386/</prism:url><prism:ID>534215386/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-02-07 19:25:20</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>This article presents the early results of synchronous multiwavelength observations of one of the brightest gamma-ray bursts (GRBs) GRB 160625B with the detailed continuous fast optical photometry of its optical counterpart obtained by MASTER and with hard X-ray and gamma-ray emission, obtained by the Lomonosov and Konus-Wind spacecraft. The detailed photometry led us to detect the quasi-periodical emission components in the intrinsic optical emission. As a result of our analysis of synchronous multiwavelength observations, we propose a three-stage collapse scenario for this long and bright GRB. We suggest that quasiperiodic fluctuations may be associated with forced precession of a self-gravitating rapidly rotating superdense body (spinar), whose evolution is determined by a powerful magnetic field. The spinar's mass allows it to collapse into a black hole at the end of evolution.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Probing the History of the Galaxy Assembly of the Counterrotating Disk Galaxy PGC 66551</dc:title><dc:creator>Katkov Ivan Yu<irid>447571</irid></dc:creator><dc:creator>Gasymov Damir<irid>229790232</irid></dc:creator><dc:creator>Kniazev Alexei Yu<irid>451009</irid></dc:creator><dc:creator>Gelfand Joseph D.<irid>173232835</irid></dc:creator><dc:creator>Rubtsov Evgenii V.<irid>45110105</irid></dc:creator><dc:creator>Chilingarian Igor V.<irid>445142</irid></dc:creator><dc:creator>Sil’chenko Olga K.<irid>423564</irid></dc:creator><prism:publicationName>Astrophysical Journal</prism:publicationName><prism:issn>0004-637X</prism:issn><journalRanking type="ImpactFactor" year="2022">4.9</journalRanking><prism:doi>10.3847/1538-4357/ad1331</prism:doi> <dc:publisher>University of Chicago Press</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>962</prism:volume><prism:number>1</prism:number><prism:startingPage>27</prism:startingPage><prism:endingPage>27</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/630499450/</prism:url><prism:ID>630499450/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-16 19:45:43</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Stellar counterrotation in disk galaxies directly relates to the complex phenomenon of the disk mass assembly believed to be driven by external processes, such as accretion and mergers. The study of such systems makes it possible to reveal the source of external accretion and establish the details of this process. In this paper, we investigate the galaxy PGC 66551 (MaNGA ID 1-179561), which hosts two large-scale counterrotating (CR) stellar disks identified in the Sloan Digital Sky Survey MaNGA data and then confirmed using deep follow-up spectroscopy with the 10 m Southern African Large Telescope. We measured the properties of ionized gas and stellar populations of both CR disks in PGC 66551. We found that the CR disk is compact, contains young stars with subsolar metallicity, and has a stellar mass of 5 × 109 M ⊙, which amounts to ≈20% of the galaxy's total. Surprisingly, the main 8 Gyr old disk has a significantly lower metallicity of ‑0.8 dex than other CR galaxies. We developed a simple analytic model of the history of the metal enrichment, which we applied to PGC 66551 and constrained the parameters of the galactic outflow wind, and estimated the metallicity of the infalling gas that formed the CR disk to be ‑0.9... ‑0.5 dex. Our interpretation prefers a merger with a gas-rich satellite over cold accretion from a cosmic filament as a source of gas, which then formed the CR disk in PGC 66551.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Scanning Probe Microscopy in Assessing Blood Cells Roughness</dc:title><dc:creator>Sovetnikov T.O.<irid>327452832</irid></dc:creator><dc:creator>Akhmetova A.I.<irid>17356968</irid></dc:creator><dc:creator>Gukasov V.M.<irid>10716924</irid></dc:creator><dc:creator>Evtushenko G.S.<irid></irid></dc:creator><dc:creator>Rybakov Yu L.<irid>20062022</irid></dc:creator><dc:creator>Yaminskii I.V.<irid>839749</irid></dc:creator><prism:publicationName>Bio-Medical Engineering</prism:publicationName><prism:issn>0006-3398</prism:issn><prism:doi>10.1007/s10527-023-10253-3</prism:doi> <dc:publisher>Springer Nature</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:url>http://istina.msu.ru/publications/article/537023269/</prism:url><prism:ID>537023269/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-02-20 16:18:57</created> <attachments><url>https://istina.msu.ru/download/537023595/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Characteristics of the use of scanning capillary microscopy in biomedical research</dc:title><dc:creator>Sovetnikov T.O.<irid>327452832</irid></dc:creator><dc:creator>Akhmetova A.I.<irid>17356968</irid></dc:creator><dc:creator>Maksimova N.E.<irid>535533983</irid></dc:creator><dc:creator>Terent’ev A.D.<irid>543711841</irid></dc:creator><dc:creator>Evtushenko G.S.<irid></irid></dc:creator><dc:creator>Rybakov Yu L.<irid>20062022</irid></dc:creator><dc:creator>Gukasov V.M.<irid>10716924</irid></dc:creator><dc:creator>Yaminskii I.V.<irid>839749</irid></dc:creator><prism:publicationName>Bio-Medical Engineering</prism:publicationName><prism:issn>0006-3398</prism:issn><prism:doi>10.1007/s10527-023-10309-4</prism:doi> <dc:publisher>Springer Nature</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>57</prism:volume><prism:number>4</prism:number><prism:startingPage>250</prism:startingPage><prism:endingPage>253</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/619786726/</prism:url><prism:ID>619786726/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-14 12:40:11</created> <attachments><url>https://istina.msu.ru/download/619786907/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Advances in scanning capillary microscopy (SCM) in studies of living objects have generated interest in this technique: over its 30 years of existence, more than 300 articles and numerous reviews describing the development of SCM have been published. The growth of dendrites and axons and the dynamics of actin in living cells have been visualized, changes in the volumes of nerve cells during migration have been measured, changes in the structure of the cell membrane during endocytosis of nanoparticles have been studied, the topography and stiffness of living fibroblasts have been assessed, and more. The uniqueness of the method lies not only in its provision of contactless three-dimensional visualization of living cells in their natural environment with nanometer spatial resolution, but also in the opportunity of using capillaries as sensors for reactive oxygen species, various neurotransmitters, and growth factors, as well as for assessing concentrations, etc., which opens up opportunities for addressing a variety of tasks in biomedicine.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Calculating the Number of Conduction Channels in a Single-Electron Reservoir Network Based on a Metal-Organic Framework Polymer</dc:title><dc:creator>Pankratov S.A.<irid>400509045</irid></dc:creator><dc:creator>Parshintsev A.A.<irid>1685853</irid></dc:creator><dc:creator>Presnov D.E.<irid>535801</irid></dc:creator><dc:creator>Shorokhov V.V.<irid>565027</irid></dc:creator><prism:publicationName>Bulletin of the Russian Academy of Sciences: Physics</prism:publicationName><prism:issn>1062-8738</prism:issn><prism:doi>10.3103/s1062873822700149</prism:doi> <dc:publisher>Allerton Press Inc.</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>87</prism:volume><prism:number>1</prism:number><prism:startingPage>59</prism:startingPage><prism:endingPage>65</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/554339146/</prism:url><prism:ID>554339146/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-03 17:47:41</created> <attachments><url>https://istina.msu.ru/download/562416706/</url><url>https://istina.msu.ru/download/562416686/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The density functional theory is used to obtain single-particle spectra of fragments of the one-dimensional metal–organic chain of a coordinated polymer. The effective resistance of the organic part of the polymer is calculated, along with the characteristic Coulomb energy and the effective capacitance of the charge center. The number of conduction channels in an experimentally studied reservoir network based on the observed polymer chains is estimated.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Anisotropic Cosmic Ray Diffusion Tensor in a Numerical Experiment</dc:title><dc:creator>Yurovsky V.O.<irid>337973005</irid></dc:creator><dc:creator>Kudryashov I.A.<irid>864241</irid></dc:creator><prism:publicationName>Bulletin of the Russian Academy of Sciences: Physics</prism:publicationName><prism:issn>1062-8738</prism:issn><prism:doi>10.3103/S1062873823702337</prism:doi> <dc:publisher>Allerton Press Inc.</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:startingPage>1</prism:startingPage><prism:endingPage>3</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/559525342/</prism:url><prism:ID>559525342/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-19 15:36:55</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The propagation of galactic cosmic rays in a model magnetic field, which is a composition of an isotropic turbulent field with the Kolmogorov turbulence spectrum and a regular constant field, is studied numerically. The dependence of the diffusion tensor on the particle energy is studied. The article shows that with decreasing energy, the anisotropy of transport increases.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Advanced bacterial detection with SERS-active gold- and silver-coated porous silicon nanowires</dc:title><dc:creator>Nazarovskaia D.A.<irid>503456084</irid></dc:creator><dc:creator>Domnin P.A.<irid>238931164</irid></dc:creator><dc:creator>Gyuppenen O.D.<irid>388830019</irid></dc:creator><dc:creator>Tsiniaikin I.I.<irid>132334141</irid></dc:creator><dc:creator>Ermolaeva S.A.<irid>3036780</irid></dc:creator><dc:creator>Gonchar K.A.<irid>1766057</irid></dc:creator><dc:creator>Osminkina L.A.<irid>520560</irid></dc:creator><prism:publicationName>Bulletin of the Russian Academy of Sciences: Physics</prism:publicationName><prism:issn>1062-8738</prism:issn><prism:doi>10.3103/S1062873823704385</prism:doi> <dc:publisher>Allerton Press Inc.</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>87</prism:volume><prism:number>Suppl 1</prism:number><prism:url>http://istina.msu.ru/publications/article/604487955/</prism:url><prism:ID>604487955/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-10-23 10:35:07</created> <attachments><url>https://istina.msu.ru/download/621493859/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Rapid and accurate bacterial identification plays a crucial role across diverse sectors, offering valuable applications. While traditional culture and molecular techniques maintain a high standard, the contemporary demand for diagnostics centers on swiftly delivering dependable insights into bacterial infections, directly at the site, within a short timeframe. In this study, we present a novel approach utilizing surface-enhanced Raman scattering (SERS)-active nanostructured substrates in the form of gold- and silver-coated porous silicon nanowires (AuAg@pSiNWs) for rapid and highly sensitive bacterial detection. The porous silicon nanowires are fabricated using a straightforward method known as metal-assisted chemical etching. Subsequently, silver and gold decoration is achieved through chemical reduction of metal salts, imbuing the substrates with SERS-active properties. Scanning electron microscopy data reveals that upon incubation with AuAg@pSiNWs, bacteria are localized amidst clusters and on the surface of the nanowires, particularly in the vicinity of bimetallic gold and silver nanoparticles. Illustrated through the utilization of Listeria innocua bacteria as a model, the SERS efficacy of AuAg@pSiNWs is highlighted, enabling rapid label-free bacterial diagnosis with a limit of detection of 1.14*10^4 CFU/mL.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Diagnostics of xenobiotics in water by Raman spectra</dc:title><dc:creator>Laptinskiy K.A.<irid>7105481</irid></dc:creator><dc:creator>Khmeleva M.Yu<irid>281328677</irid></dc:creator><dc:creator>Sarmanova O.E.<irid>46006074</irid></dc:creator><dc:creator>Vervald A.M.<irid>7136944</irid></dc:creator><dc:creator>Utegenova L.S.<irid>500251439</irid></dc:creator><dc:creator>Dolenko T.A.<irid>420914</irid></dc:creator><prism:publicationName>Bulletin of the Russian Academy of Sciences: Physics</prism:publicationName><prism:issn>1062-8738</prism:issn><prism:doi>10.1134/S106287382370435X</prism:doi> <dc:publisher>Allerton Press Inc.</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>87</prism:volume><prism:startingPage>S8</prism:startingPage><prism:endingPage>S13</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/609036465/</prism:url><prism:ID>609036465/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-07 17:51:40</created> <attachments><url>https://istina.msu.ru/download/621394947/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Calculating the Number of Conduction Channels in a Single-Electron Reservoir Network Based on a Metal-Organic Framework Polymer</dc:title><dc:creator>Pankratov S.A.<irid>400509045</irid></dc:creator><dc:creator>Parshintsev A.A.<irid>1685853</irid></dc:creator><dc:creator>Presnov D.E.<irid>535801</irid></dc:creator><dc:creator>Shorokhov V.V.<irid>565027</irid></dc:creator><prism:publicationName>Bulletin of the Russian Academy of Sciences: Physics</prism:publicationName><prism:issn>1062-8738</prism:issn><prism:doi>10.3103/s1062873822700149</prism:doi> <dc:publisher>Allerton Press Inc.</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>87</prism:volume><prism:number>1</prism:number><prism:startingPage>59</prism:startingPage><prism:endingPage>65</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/628789821/</prism:url><prism:ID>628789821/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-10 16:14:44</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Tensor force impact on shell evolution in neutron-rich Si and Ni isotopes</dc:title><dc:creator>Sidorov Semyon<irid>30426547</irid></dc:creator><dc:creator>Kornilova Anastasia<irid>477543700</irid></dc:creator><dc:creator>Tretyakova Tatiana<irid>1172656</irid></dc:creator><prism:publicationName>Chinese Physics C</prism:publicationName><prism:issn>1674-1137</prism:issn><journalRanking type="ImpactFactor" year="2022">3.6</journalRanking><prism:doi>10.1088/1674-1137/ad20d4</prism:doi> <dc:publisher>IOP Publishing</dc:publisher><prism:publicationDate>2024</prism:publicationDate><prism:url>http://istina.msu.ru/publications/article/623885209/</prism:url><prism:ID>623885209/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-24 20:02:43</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Measurement of yields and angular distributions of γ-quanta from the interaction of 14.1 MeV neutrons with oxygen, phosphorus and sulfur</dc:title><dc:creator>Grozdanov Dimitar<irid>11865659</irid></dc:creator><dc:creator>Fedorov Nikita<irid>18580682</irid></dc:creator><dc:creator>Dabylova Saltanat<irid>88771977</irid></dc:creator><dc:creator>Kopatch Yuri<irid>115986474</irid></dc:creator><dc:creator>Ruskov Ivan<irid>11627712</irid></dc:creator><dc:creator>Skoy Vadim<irid>11460134</irid></dc:creator><dc:creator>Tretyakova Tatiana<irid>1172656</irid></dc:creator><dc:creator>Hramco Constantin<irid>60588278</irid></dc:creator><dc:creator>Kharlamov Petr<irid>37574068</irid></dc:creator><dc:creator>Pampushik Grigorii<irid>491540423</irid></dc:creator><dc:creator>Filonchik Polina<irid>619516233</irid></dc:creator><dc:creator>Andreev Aleksandr<irid>517623455</irid></dc:creator><prism:publicationName>Chinese Physics C</prism:publicationName><prism:issn>1674-1137</prism:issn><journalRanking type="ImpactFactor" year="2022">3.6</journalRanking><prism:doi>10.1088/1674-1137/ad147e</prism:doi> <dc:publisher>IOP Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:url>http://istina.msu.ru/publications/article/619516234/</prism:url><prism:ID>619516234/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-13 18:17:58</created> <attachments><url>https://istina.msu.ru/download/620904187/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>A study of the inelastic scattering of neutrons with an energy of 14.1 MeV on the nuclei of oxygen, phosphorus and sulfur was carried out at the TANGRA facility at JINR (Dubna). The purpose of the experiment was to refine existing and obtain new data on the yields and angular distributions of γ-quanta emitted by the studied nuclei as a result of neutron-induced nuclear reactions using the tagged neutron method. Two types of detector systems were used to register γ-quanta. The γ-ray yields were measured using a high-purity germanium (HPGe) detector. The angular distributions of γ-rays were obtained using a system of 18 scintillation detectors based on bismuth germanite Bi4Ge3O12 (BGO) located around the sample. As a result of the studies carried out, the yields of two transitions for the reaction of tagged neutrons with 16O, nine transitions for the reaction with 31P, and nine transitions for the reaction with 32S were measured for the first time. The angular anisotropy of the γ-radiation accompanying the inelastic scattering of neutrons with an energy of 14.1 MeV on 31 P nuclei was also measured for the first time.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Debugging of the FUMILIM minimization package</dc:title><dc:creator>Sitnik I.M.<irid>1620255</irid></dc:creator><dc:creator>Alexeev I.I.<irid>397642</irid></dc:creator><dc:creator>Nevsky D.V.<irid>136921775</irid></dc:creator><prism:publicationName>Computer Physics Communications</prism:publicationName><prism:issn>0010-4655</prism:issn><journalRanking type="ImpactFactor" year="2022">6.3</journalRanking><prism:doi>10.1016/j.cpc.2023.108868</prism:doi> <dc:publisher>Elsevier BV</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:url>http://istina.msu.ru/publications/article/586410292/</prism:url><prism:ID>586410292/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-17 22:49:56</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The suggested package FUMILIM, based on famous FUMILI minimization package, has the following advantages. Unlimited number of parameters (multi-set tasks). Ability to work with multidimensional experimental points, described by a vector function. The preliminary scan is envisaged for complicated tasks. For heavy user's functions the parallel fit is envisaged with the help of OpenMP service. Multi-optional user interface, including the option to ignore wrong experimental points. The package contains popular intrinsic user's functions. All of them can be used without the definition of the parameter initial values. There is a package of fast track reconstruction programs for working with detectors, including drift chambers. The capacity of these programs is about of 106 tracks per second (at 2.8 GHz). In the corrected version a number of bugs is fixed. The service for multi-set tasks has been essentially expanded. Information support of poorly converged tasks and removing of wrong experimtntal points is expanded. All programs are written in FORTRAN-90. The investigation has been performed at the Veksler and Baldin Laboratory of High Energy Physics, JINR. It is supported in part by the RFBR grant, no. 21-52-12025.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Magnetosphere and Auroral Oval Dynamics during 27 February 2023 Magnetic Storm</dc:title><dc:creator>Lavrukhin A.S.<irid>9640993</irid></dc:creator><dc:creator>Alexeev I.I.<irid>397642</irid></dc:creator><dc:creator>Belenkaya E.S.<irid>393122</irid></dc:creator><dc:creator>Kalegaev V.V.<irid>412082</irid></dc:creator><dc:creator>Nazarkov I.S.<irid>1456855</irid></dc:creator><dc:creator>Nevsky D.V.<irid>136921775</irid></dc:creator><prism:publicationName>Cosmic Research (English translation of Kosimicheskie Issledovaniya)</prism:publicationName><prism:issn>0010-9525</prism:issn><journalRanking type="ImpactFactor" year="2022">.6</journalRanking><prism:doi>10.1134/S0010952523600324</prism:doi> <dc:publisher>Pleiades Publishing, Inc.</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>62</prism:volume><prism:number>2</prism:number><prism:startingPage>162</prism:startingPage><prism:endingPage>177</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/629626385/</prism:url><prism:ID>629626385/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-13 18:12:31</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>We discuss the reasons for the extreme compression of the magnetosphere during the storm onFebruary 27, 2023, when the magnetopause crossed the geostationary orbit. At the same time, aurora wasobserved at middle latitudes. The global parameters of magnetospheric current systems were calculated from data on the parameters of the interplanetary medium and geomagnetic indices characterizing the evolution of the ring current and the western auroral electrojet, using a paraboloid model of the magnetosphere. We have calculated the contributions of various current systems to the observed value of the index. The contribution of the tail current sheet is comparable with the contribution of the ring current for this storm. The calculated modelled field is compared with the data of the GOES-16, 18 magnetometers; the results are in good agreement with observations.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Automatic Detection of Bow Shock and Magnetopause Positions at Mercury’s Magnetosphere Using MESSENGER Magnetometer Data</dc:title><dc:creator>Nevskii D.V.<irid>136921775</irid></dc:creator><dc:creator>Lavrukhin A.S.<irid>9640993</irid></dc:creator><dc:creator>Alexeev I.I.<irid>397642</irid></dc:creator><prism:publicationName>Cosmic Research (English translation of Kosimicheskie Issledovaniya)</prism:publicationName><prism:issn>0010-9525</prism:issn><journalRanking type="ImpactFactor" year="2022">.6</journalRanking><prism:doi>10.1134/s0010952522600081</prism:doi> <dc:publisher>Pleiades Publishing, Inc.</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>61</prism:volume><prism:number>3</prism:number><prism:startingPage>194</prism:startingPage><prism:endingPage>205</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/613654780/</prism:url><prism:ID>613654780/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-22 19:19:44</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Zn modification of Co3O4 nanofibers: effect on structure and conductivity</dc:title><dc:creator>Ilin Alexander S.<irid>5644065</irid></dc:creator><dc:creator>Martyshov Mikhail N.<irid>587285</irid></dc:creator><dc:creator>Platonov Vadim B.<irid>30527079</irid></dc:creator><dc:creator>Pavlikov Alexander V.<irid>1323642</irid></dc:creator><dc:creator>Koroleva Alexandra V.<irid>46771829</irid></dc:creator><dc:creator>Kytina Ekaterina V.<irid>334085084</irid></dc:creator><dc:creator>Konstantinova Elizaveta A.<irid>415137</irid></dc:creator><dc:creator>Forsh Pavel A.<irid>584907</irid></dc:creator><dc:creator>Kashkarov Pavel K.<irid>384659</irid></dc:creator><prism:publicationName>Crystal Growth and Design</prism:publicationName><prism:issn>1528-7483</prism:issn><journalRanking type="ImpactFactor" year="2022">3.8</journalRanking><prism:doi>10.1021/acs.cgd.3c00065</prism:doi> <dc:publisher>American Chemical Society</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>23</prism:volume><prism:number>6</prism:number><prism:startingPage>4255</prism:startingPage><prism:endingPage>4261</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/554049476/</prism:url><prism:ID>554049476/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-02 17:00:22</created> <attachments><url>https://istina.msu.ru/download/562420644/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Nanoarchitectonics and electrochemical properties of redox-active nanogels for redox flow battery electrolytes</dc:title><dc:creator>Kozhunova Elena Yu<irid>494720</irid></dc:creator><dc:creator>Inozemtseva Alina I.<irid>8791298</irid></dc:creator><dc:creator>Nazarov Mikhail A.<irid>395660016</irid></dc:creator><dc:creator>Nikolenko Anatoly D.<irid>258808845</irid></dc:creator><dc:creator>Zhvanskaya Elena S.<irid>537350480</irid></dc:creator><dc:creator>Kiselyova Olga I.<irid>410170</irid></dc:creator><dc:creator>Motyakin Mikhail V.<irid>2014447</irid></dc:creator><dc:creator>Kutyakov Sergey V.<irid>12022395</irid></dc:creator><dc:creator>Pakhomov Alexey A.<irid>53014150</irid></dc:creator><dc:creator>Itkis Daniil M.<irid>527558</irid></dc:creator><dc:creator>Chertovich Alexander V.<irid>276987</irid></dc:creator><dc:creator>Khokhlov Alexei R.<irid>499389</irid></dc:creator><prism:publicationName>Electrochimica Acta</prism:publicationName><prism:issn>0013-4686</prism:issn><journalRanking type="ImpactFactor" year="2022">6.6</journalRanking><prism:doi>10.1016/j.electacta.2023.143534</prism:doi> <dc:publisher>Elsevier BV</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>475</prism:volume><prism:url>http://istina.msu.ru/publications/article/616464017/</prism:url><prism:ID>616464017/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>1</val_Scopus><created>2023-12-02 22:06:06</created> <attachments><url>https://istina.msu.ru/download/616464032/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>In this paper, we provide a thorough electrochemical study of redox-active nanosized cationic gels which are promising materials for redox flow battery electrolytes. We use two-step synthesis under mild aqueous conditions: precipitation polymerization of nanogels based on poly-(N-isporopylacrylamide-co-N-(3-aminopropyl)methacrylamide hydrochloride) (PNIPAM-co-APMA), and grafting of redox-active 4-(3-carboxypropanamido)-TEMPO units to the nanogels. We demonstrate stable reduction–oxidation behavior of such nanogels and suggest a universal approach to evaluate the “effective” concentration and diffusion coefficient of redox-active groups grafted to nanogel particles. For the TEMPO-grafted PNIPAM-co-APMA nanogels we find the “effective” concentration of TEMPO-groups to be approximately 50 % of their total concentration and demonstrate an increase of the “effective” concentration upon electrode rotation. Also, we investigate electron transfer kinetics of redox-active nanogels and provide an evidence that the adsorbed layer of nanogels facilitates electron transfer.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Direct Study of CO2 Capture Efficiency during Microalgae Arthrospira platensis Cultivation at High CO2 Concentrations</dc:title><dc:creator>Chunzhuk Elizaveta A.<irid>463785120</irid></dc:creator><dc:creator>Grigorenko Anatoly V.<irid>1438410</irid></dc:creator><dc:creator>Chernova Nadezhda I.<irid>495429</irid></dc:creator><dc:creator>Kiseleva Sofya V.<irid>494528</irid></dc:creator><dc:creator>Ryndin Kirill G.<irid></irid></dc:creator><dc:creator>Popel Oleg S.<irid></irid></dc:creator><dc:creator>Malaniy Sergey Ya<irid></irid></dc:creator><dc:creator>Slavkina Olga V.<irid></irid></dc:creator><dc:creator>de Farias Neves Fabio<irid></irid></dc:creator><dc:creator>Leng Lijian<irid></irid></dc:creator><dc:creator>Kumar Vinod<irid></irid></dc:creator><dc:creator>Vlaskin Mikhail S.<irid>1489599</irid></dc:creator><prism:publicationName>Energies</prism:publicationName><prism:issn>1996-1073</prism:issn><journalRanking type="ImpactFactor" year="2022">3.2</journalRanking><prism:doi>10.3390/en16020822</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>16</prism:volume><prism:number>2</prism:number><prism:startingPage>822</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/526286397/</prism:url><prism:ID>526286397/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-01-12 16:26:00</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Ground and excited states of the finite-size Fe chains on Pt(664) surface</dc:title><dc:creator>Kolesnikov S.V.<irid>422121</irid></dc:creator><dc:creator>Sapronova E.S.<irid>391077987</irid></dc:creator><dc:creator>Kolesnikova I.N.<irid>1897998</irid></dc:creator><prism:publicationName>European Physical Journal B</prism:publicationName><prism:issn>1434-6028</prism:issn><journalRanking type="ImpactFactor" year="2022">1.6</journalRanking><prism:doi>10.1140/epjb/s10051-023-00634-8</prism:doi> <dc:publisher>Springer Verlag</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>96</prism:volume><prism:number>12</prism:number><prism:url>http://istina.msu.ru/publications/article/620903586/</prism:url><prism:ID>620903586/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-18 09:59:31</created> <attachments><url>https://istina.msu.ru/download/620903654/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The energy barriers for magnetization reversal of the finite-size Fe chains on Pt(664) surface have been calculated using the geodesic nudged elastic band method. The Dzyaloshinskii–Moriya interaction and the dipole–dipole interaction have been taken into account. It has been found that the ground states of Fe/Pt(664) atomic chains are non-collinear at the ends. The magnetization reversal of short atomic chains occurs without the formation of the domain walls. While the magnetization reversal of the long atomic chains occurs via the formation of the domain walls. The interplay between the magnetic anisotropy energy and the Dzyaloshinskii–Moriya interaction leads to the rotation of the domain wall plane. As a result, the domain walls in Fe/Pt(664) atomic chains are intermediate configurations between Bloch and Néel walls. The dipole–dipole interaction weakly influences the value of the energy barriers and may be neglected. It is shown that the presented results can be explained in the framework of the classical continuous model. The constructed approximate functions correctly describe all features of the ground states and the saddle points. The structure of the domain walls and the dependencies of the energy barriers on the parameters of the model are different from the case of the Co/Pt(664) system investigated recently.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Theory of gravitational lensing on a curved cosmic string</dc:title><dc:creator>Bulygin Igor<irid>331203292</irid></dc:creator><dc:creator>Sazhin Mikhail<irid>486156</irid></dc:creator><dc:creator>Sazhina Olga<irid>383035</irid></dc:creator><prism:publicationName>European Physical Journal C</prism:publicationName><prism:issn>1434-6044</prism:issn><journalRanking type="ImpactFactor" year="2022">4.4</journalRanking><prism:doi>10.1140/epjc/s10052-023-11994-x</prism:doi> <dc:publisher>Springer Verlag</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>83</prism:volume><prism:startingPage>844</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/591970985/</prism:url><prism:ID>591970985/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-09 00:19:35</created> <attachments><url>https://istina.msu.ru/download/591971036/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>It is discussed in detail the complete mathematical model of gravitational lensingon a single cosmic string (CS) of general shape and position with respect tothe line of sight. CS are one-dimensional extended objects assuredly predictedby modern cosmology. The presence of CS changes the global geometry of theUniverse, could clarify the properties of the early Universe, including inflationmodels, and could serve as a unique proof of higher-dimensional theories. Despitethe fact that CS have not yet been reliable detected, there are several strong independentindications of the existence of the CS, based of CMB analysis and searchof gravitational lens chains with special properties (The recent new indication ofthe existence of the CSs is the nHz gravitational waves in the NANOGrav andother PTA Collaborations data.) However, early considered models of straight CSpresented only a small fraction of the general CS-configurations to be observed.Now we propose model which could significantly increase the possibilities ofCS observational search. It is considered more realistic models have necessarilyinclude the inclinations and bends of the CS. Besides, the recent analysis ofobservational data on the search for gravitational-lens candidates, shows a largenumber of pairs that could be explained by the complex geometry of the CS.Accept (01-Sep-2023)</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Measurement of the muon flux at the SND@LHC experiment</dc:title><dc:creator>Albanese R.<irid>284144112</irid></dc:creator><dc:creator>Alexandrov A.<irid></irid></dc:creator><dc:creator>Alicante F.<irid>608735732</irid></dc:creator><dc:creator>Anokhina A.<irid>394331</irid></dc:creator><dc:creator>Asada T.<irid>9432442</irid></dc:creator><dc:creator>Battilana C.<irid>608735733</irid></dc:creator><dc:creator>Bay A.<irid></irid></dc:creator><dc:creator>Betancourt C.<irid>459149047</irid></dc:creator><dc:creator>Bick D.<irid>144140247</irid></dc:creator><dc:creator>Biswas R.<irid>53588830</irid></dc:creator><dc:creator>Castro A.Blanco<irid></irid></dc:creator><dc:creator>Boccia V.<irid></irid></dc:creator><dc:creator>Bogomilov M.<irid></irid></dc:creator><dc:creator>Bonacorsi D.<irid>14953334</irid></dc:creator><dc:creator>Bonivento W.M.<irid>79293546</irid></dc:creator><dc:creator>Bordalo P.<irid>3489945</irid></dc:creator><dc:creator>Boyarsky A.<irid>2741474</irid></dc:creator><dc:creator>Buontempo S.<irid>20541553</irid></dc:creator><dc:creator>Campanelli M.<irid>326795261</irid></dc:creator><dc:creator>Camporesi T.<irid>608735734</irid></dc:creator><dc:creator>Canale V.<irid>608735735</irid></dc:creator><dc:creator>Castro A.<irid></irid></dc:creator><dc:creator>Centanni D.<irid>555775956</irid></dc:creator><dc:creator>Cerutti F.<irid>49622391</irid></dc:creator><dc:creator>Chernyavskiy M.<irid></irid></dc:creator><dc:creator>Choi K.Y.<irid></irid></dc:creator><dc:creator>Cholak S.<irid>165129594</irid></dc:creator><dc:creator>Cindolo F.<irid>241147603</irid></dc:creator><dc:creator>Climescu M.<irid>459149062</irid></dc:creator><dc:creator>Conaboy A.P.<irid></irid></dc:creator><dc:creator>Dallavalle G.M.<irid>459149068</irid></dc:creator><dc:creator>Davino D.<irid></irid></dc:creator><dc:creator>de Bryas P.T.<irid>625249608</irid></dc:creator><dc:creator>De Lellis G.<irid>328273517</irid></dc:creator><dc:creator>De Magistris M.<irid>625249609</irid></dc:creator><dc:creator>De Roeck A.<irid></irid></dc:creator><dc:creator>De Rújula A.<irid>625249610</irid></dc:creator><dc:creator>De Serio M.<irid>328273518</irid></dc:creator><dc:creator>De Simone D.<irid>625249611</irid></dc:creator><dc:creator>Di Crescenzo A.<irid>328273520</irid></dc:creator><dc:creator>Donà R.<irid></irid></dc:creator><dc:creator>Durhan O.<irid></irid></dc:creator><dc:creator>Fabbri F.<irid>459149086</irid></dc:creator><dc:creator>Fedotovs F.<irid></irid></dc:creator><dc:creator>Ferrillo M.<irid>608735740</irid></dc:creator><dc:creator>Ferro-Luzzi M.<irid>536776</irid></dc:creator><dc:creator>Fini R.A.<irid></irid></dc:creator><dc:creator>Fiorillo A.<irid>608735741</irid></dc:creator><dc:creator>Fresa R.<irid></irid></dc:creator><dc:creator>Funk W.<irid></irid></dc:creator><dc:creator>Garay Walls F.M.<irid></irid></dc:creator><dc:creator>Golovatiuk A.<irid>555775958</irid></dc:creator><dc:creator>Golutvin A.<irid></irid></dc:creator><dc:creator>Graverini E.<irid>459149103</irid></dc:creator><dc:creator>Guler A.M.<irid></irid></dc:creator><dc:creator>Guliaeva V.<irid>365474120</irid></dc:creator><dc:creator>Haefeli G.J.<irid>459149108</irid></dc:creator><dc:creator>Hagner C.<irid>1489082</irid></dc:creator><dc:creator>Helo Herrera J.C.<irid></irid></dc:creator><dc:creator>van Herwijnen E.<irid>625249612</irid></dc:creator><dc:creator>Iengo P.<irid>4710705</irid></dc:creator><dc:creator>Ilieva S.<irid>2221383</irid></dc:creator><dc:creator>Infantino A.<irid>608735743</irid></dc:creator><dc:creator>Iuliano A.<irid>328273532</irid></dc:creator><dc:creator>Jacobsson R.<irid>69346472</irid></dc:creator><dc:creator>Kamiscioglu C.<irid>20541562</irid></dc:creator><dc:creator>Kauniskangas A.M.<irid>608735744</irid></dc:creator><dc:creator>Khalikov E.<irid>30933205</irid></dc:creator><dc:creator>Kim S.H.<irid></irid></dc:creator><dc:creator>Kim Y.G.<irid>412378394</irid></dc:creator><dc:creator>Klioutchnikov G.<irid>608735745</irid></dc:creator><dc:creator>Komatsu M.<irid>6413610</irid></dc:creator><dc:creator>Konovalova N.<irid></irid></dc:creator><dc:creator>Kuleshov S.<irid></irid></dc:creator><dc:creator>Lacker H.M.<irid></irid></dc:creator><dc:creator>Lantwin O.<irid>459149145</irid></dc:creator><dc:creator>Manghi F.Lasagni<irid>625249615</irid></dc:creator><dc:creator>Lauria A.<irid>6625692</irid></dc:creator><dc:creator>Lee K.Y.<irid>22378407</irid></dc:creator><dc:creator>Lee K.S.<irid>328976651</irid></dc:creator><dc:creator>Lo Meo S.<irid></irid></dc:creator><dc:creator>Loschiavo V.P.<irid>459149149</irid></dc:creator><dc:creator>Marcellini S.<irid>608735747</irid></dc:creator><dc:creator>Margiotta A.<irid>4913721</irid></dc:creator><dc:creator>Mascellani A.<irid>608735748</irid></dc:creator><dc:creator>Miano A.<irid>142082175</irid></dc:creator><dc:creator>Mikulenko A.<irid></irid></dc:creator><dc:creator>Montesi M.C.<irid>20541571</irid></dc:creator><dc:creator>Navarria F.L.<irid>608735749</irid></dc:creator><dc:creator>Ogawa S.<irid>328273551</irid></dc:creator><dc:creator>Okateva N.<irid>4996430</irid></dc:creator><dc:creator>Ovchynnikov M.<irid>53592028</irid></dc:creator><dc:creator>Paggi G.<irid>11536142</irid></dc:creator><dc:creator>Park B.D.<irid></irid></dc:creator><dc:creator>Pastore A.<irid>466476</irid></dc:creator><dc:creator>Perrotta A.<irid>63497795</irid></dc:creator><dc:creator>Podgrudkov D.<irid>350224240</irid></dc:creator><dc:creator>Polukhina N.<irid>30693906</irid></dc:creator><dc:creator>Prota A.<irid></irid></dc:creator><dc:creator>Quercia A.<irid>608735750</irid></dc:creator><dc:creator>Ramos S.<irid>3489745</irid></dc:creator><dc:creator>Reghunath A.<irid>459149181</irid></dc:creator><dc:creator>Roganova T.<irid>393396</irid></dc:creator><dc:creator>Ronchetti F.<irid>4976942</irid></dc:creator><dc:creator>Rovelli T.<irid></irid></dc:creator><dc:creator>Ruchayskiy O.<irid>2741475</irid></dc:creator><dc:creator>Ruf T.<irid></irid></dc:creator><dc:creator>Gilarte M.Sabate<irid>625249619</irid></dc:creator><dc:creator>Sadykov Z.<irid>409981154</irid></dc:creator><dc:creator>Samoilov M.<irid>401745729</irid></dc:creator><dc:creator>Scalera V.<irid>608735751</irid></dc:creator><dc:creator>Schmidt-Parzefall W.<irid>625249621</irid></dc:creator><dc:creator>Schneider O.<irid>104722364</irid></dc:creator><dc:creator>Sekhniaidze G.<irid>608735752</irid></dc:creator><dc:creator>Serra N.<irid>32521361</irid></dc:creator><dc:creator>Shaposhnikov M.<irid>10366771</irid></dc:creator><dc:creator>Shevchenko V.<irid></irid></dc:creator><dc:creator>Shchedrina T.<irid>3818738</irid></dc:creator><dc:creator>Shchutska L.<irid></irid></dc:creator><dc:creator>Shibuya H.<irid>328273560</irid></dc:creator><dc:creator>Simone S.<irid></irid></dc:creator><dc:creator>Siroli G.P.<irid>4788772</irid></dc:creator><dc:creator>Sirri G.<irid>328273563</irid></dc:creator><dc:creator>Soares G.<irid>566439</irid></dc:creator><dc:creator>Sohn J.Y.<irid>34758276</irid></dc:creator><dc:creator>Soto Sandoval O.J.<irid>625249624</irid></dc:creator><dc:creator>Spurio M.<irid>2470794</irid></dc:creator><dc:creator>Starkov N.<irid>30693907</irid></dc:creator><dc:creator>Timiryasov I.<irid></irid></dc:creator><dc:creator>Tioukov V.<irid>5641128</irid></dc:creator><dc:creator>Tramontano F.<irid></irid></dc:creator><dc:creator>Trippl C.<irid>608735754</irid></dc:creator><dc:creator>Ursov E.<irid>253994105</irid></dc:creator><dc:creator>Ustyuzhanin A.<irid></irid></dc:creator><dc:creator>Vankova-Kirilova G.<irid>625249625</irid></dc:creator><dc:creator>Verguilov V.<irid>608735756</irid></dc:creator><dc:creator>Guerreiro Leonardo N.Viegas<irid></irid></dc:creator><dc:creator>Vilela C.<irid>608735758</irid></dc:creator><dc:creator>Visone C.<irid>459149229</irid></dc:creator><dc:creator>Wanke R.<irid></irid></dc:creator><dc:creator>Yaman E.<irid></irid></dc:creator><dc:creator>Yazici C.<irid>608735759</irid></dc:creator><dc:creator>Yoon C.S.<irid>9637047</irid></dc:creator><dc:creator>Zaffaroni E.<irid>608735760</irid></dc:creator><dc:creator>Saa J.Zamora<irid></irid></dc:creator><prism:publicationName>European Physical Journal C</prism:publicationName><prism:issn>1434-6044</prism:issn><journalRanking type="ImpactFactor" year="2022">4.4</journalRanking><prism:doi>10.1140/epjc/s10052-023-12380-3</prism:doi> <dc:publisher>Springer Verlag</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>84</prism:volume><prism:number>90</prism:number><prism:startingPage>10</prism:startingPage><prism:endingPage>1140</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/625249626/</prism:url><prism:ID>625249626/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-29 13:14:39</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The Scattering and Neutrino Detector at the LHC(SND@LHC) started taking data at the beginning of Run 3 of the LHC. The experiment is designed to perform measurements with neutrinos produced in proton-proton collisions at the LHC in an energy range between 100 GeV and 1 TeV. It covers a previously unexplored pseudo-rapidity range of 7.2 < η < 8.4. The detector is located 480m downstream of the ATLAS interaction point in the TI18 tunnel. It comprises a veto system, a target consisting of tungsten plates interleaved with nuclear emulsion and scintillating fiber (SciFi) trackers, followed by a muon detector (UpStream, US and DownStream, DS). In this article we report the measurement of the muon flux in three subdetectors: the emulsion, the SciFi trackers and the DownStream Muon detector. The muon flux per integrated luminosity through an 18×18cm2 area in the emulsion is:1.5 ± 0.1(stat) × 104 fb/cm2.The muon flux per integrated luminosity through a 31×31cm2 area in the centre of the SciFi is:2.06 ± 0.01(stat) ± 0.12(sys) × 104fb/cm2The muon flux per integrated luminosity through a 52×52cm2 area in the centre of the downstream muon system is:2.35 ± 0.01(stat) ± 0.10(sys) × 104 fb/cm2The total relative uncertainty of the measurements by the electronic detectors is 6% for the SciFi and 4% for theDS measurement. The Monte Carlo simulation prediction of these fluxes is 20–25% lower than the measured values.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Parameters of Coronal Dimmings and Their Variations during Solar Cycle 24</dc:title><dc:creator>Vakhrusheva A.A.<irid>415877743</irid></dc:creator><dc:creator>Shugai Yu S.<irid>587002</irid></dc:creator><dc:creator>Kaportseva K.B.<irid>48588354</irid></dc:creator><dc:creator>Eremeev V.E.<irid>245079725</irid></dc:creator><dc:creator>Kalegaev V.V.<irid>412082</irid></dc:creator><prism:publicationName>Geomagnetism and Aeronomy</prism:publicationName><prism:issn>0016-7932</prism:issn><journalRanking type="ImpactFactor" year="2022">.6</journalRanking><prism:doi>10.1134/S0016793223600868</prism:doi> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>64</prism:volume><prism:number>1</prism:number><prism:startingPage>1</prism:startingPage><prism:endingPage>10</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/629896415/</prism:url><prism:ID>629896415/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-14 10:23:40</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Abstract—The parameters of dimmings and their relation to coronal mass ejections (CMEs) are studied todetermine the location of possible sources of ejections on the solar disk during solar cycle 24. We used theSolar Demon database, which contains information on flares and dimmings obtained by processing imagesfrom the SDO/AIA space observatory. Of all the analyzed dimmings, 16% are аssociated with CMEs fromthe CACTus database using SOHO/LASCO coronagraph data for 2010–2018. Based on the parameter distribution,it is found that dimmings related with CMEs are on average events with large absolute parameter values.The correlation coefficient between the position angle of the dimmings and the position angle of the CMEassociated with them is 0.96. For dimmings observed in the central part of the solar disk, we obtained correlationcoefficients between the CME velocity and dimming parameters that are close to 0.5. The results can be used tomodel the propagation of CMEs and to refine the probability of their arrival to the near-Earth orbit.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Dual-Mode 1-D Linear Ultrasound Array for Image-Guided Drug Delivery Enhancement Without Ultrasound Contrast Agents</dc:title><dc:creator>Williams Randall P.<irid>411323186</irid></dc:creator><dc:creator>Karzova Maria M.<irid>512811</irid></dc:creator><dc:creator>Yuldashev Petr V.<irid>545987</irid></dc:creator><dc:creator>Kaloev Azamat Z.<irid>243136503</irid></dc:creator><dc:creator>Nartov Fedor A.<irid>327657163</irid></dc:creator><dc:creator>Khokhlova Vera A.<irid>524110</irid></dc:creator><dc:creator>Cunitz Bryan W.<irid>411323254</irid></dc:creator><dc:creator>Morrison Kyle P.<irid>586802319</irid></dc:creator><dc:creator>Khokhlova Tatiana D.<irid>844928</irid></dc:creator><prism:publicationName>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</prism:publicationName><prism:issn>0885-3010</prism:issn><journalRanking type="ImpactFactor" year="2022">3.6</journalRanking><prism:doi>10.1109/tuffc.2023.3268603</prism:doi> <dc:publisher>Institute of Electrical and Electronics Engineers</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>70</prism:volume><prism:number>7</prism:number><prism:startingPage>693</prism:startingPage><prism:endingPage>707</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/586802320/</prism:url><prism:ID>586802320/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-22 10:52:21</created> <attachments><url>https://istina.msu.ru/download/587111654/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Deep Semantic Segmentation of Angiogenesis Images</dc:title><dc:creator>Ibragimov A.<irid>354165566</irid></dc:creator><dc:creator>Senotrusova S.<irid>323316612</irid></dc:creator><dc:creator>Markova K.<irid></irid></dc:creator><dc:creator>Karpulevich E.<irid>328510661</irid></dc:creator><dc:creator>Ivanov A.<irid></irid></dc:creator><dc:creator>Tyshchuk E.<irid></irid></dc:creator><dc:creator>Grebenkina P.<irid>525194472</irid></dc:creator><dc:creator>Stepanova O.<irid></irid></dc:creator><dc:creator>Sirotskaya A.<irid></irid></dc:creator><dc:creator>Kovaleva A.<irid></irid></dc:creator><dc:creator>Oshkolova A.<irid>525194473</irid></dc:creator><dc:creator>Zementova M.<irid>525194474</irid></dc:creator><dc:creator>Konstantinova V.<irid></irid></dc:creator><dc:creator>Kogan I.<irid></irid></dc:creator><dc:creator>Selkov S.<irid></irid></dc:creator><dc:creator>Sokolov D.<irid></irid></dc:creator><prism:publicationName>International Journal of Molecular Sciences</prism:publicationName><prism:issn>1422-0067</prism:issn><journalRanking type="ImpactFactor" year="2022">5.6</journalRanking><prism:doi>10.3390/ijms24021102</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>24</prism:volume><prism:url>http://istina.msu.ru/publications/article/525194475/</prism:url><prism:ID>525194475/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-01-06 12:34:14</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Angiogenesis is the development of new blood vessels from pre-existing ones. It is a complex multifaceted process that is essential for the adequate functioning of human organisms. The investigation of angiogenesis is conducted using various methods. One of the most popular and most serviceable of these methods in vitro is the short-term culture of endothelial cells on Matrigel. However, a significant disadvantage of this method is the manual analysis of a large number of microphotographs. In this regard, it is necessary to develop a technique for automating the annotation of images of capillary-like structures. Despite the increasing use of deep learning in biomedical image analysis, as far as we know, there still has not been a study on the application of this method to angiogenesis images. To the best of our knowledge, this article demonstrates the first tool based on a convolutional Unet++ encoder–decoder architecture for the semantic segmentation of in vitro angiogenesis simulation images followed by the resulting mask postprocessing for data analysis by experts. The first annotated dataset in this field, AngioCells, is also being made publicly available. To create this dataset, participants were recruited into a markup group, an annotation protocol was developed, and an interparticipant agreement study was carried out.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Staging of Occurrence of Seismicity Anomalies before Earthquakes in Kamchatka, Japan and Iceland</dc:title><dc:creator>Smirnov VB<irid>552793</irid></dc:creator><dc:creator>Petrushov A.<irid>153226173</irid></dc:creator><prism:publicationName>Izvestiya. Physics of the Solid Earth</prism:publicationName><prism:issn>1069-3513</prism:issn><journalRanking type="ImpactFactor" year="2022">1</journalRanking><prism:doi>10.1134/S1069351323050129</prism:doi> <dc:publisher>Pleiades Publishing, Inc.</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>59</prism:volume><prism:number>5</prism:number><prism:startingPage>717</prism:startingPage><prism:endingPage>732</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/602289309/</prism:url><prism:ID>602289309/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>1</val_Scopus><created>2023-10-15 21:47:49</created> <attachments><url>https://istina.msu.ru/download/602289419/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The paper presents the results of a study showing that anomalies in the seismic regime parametersbefore earthquakes of various magnitudes occur in stages. The occurrence in stages means the correlationbetween the times of formation and development of anomalies in various seismic regime parameters. Earthquakesin regions with two general types of tectonics are selected for analysis: in the subduction zone (Kamchatkaand Japan) and in the rift zone (Iceland). The selection of regions is primarily based on the availabilityand quality of regional seismic catalogs. GR b-value and the composite parameter known as the RTL are usedas the seismic regime parameters. The detection of spatiotemporal anomalies before the selected earthquakesis based on the known “precursory patterns” of the seismic regime parameters. Comparing the durations ofthe detected anomalies shows that the anomalies of b-value generally occur earlier than the RTL anomalies.Possible reasons why the anomalies occur in stages are suggested. In the vicinity of the studied earthquakes,a change in the seismogenic rupture concentration parameter within the corresponding seismic cycles is alsoestimated. Comparing the times at which the detected seismic regime anomalies occur with the values of theseismogenic rupture concentration parameter corresponding to these times shows that the formation of seismicregime anomalies occurs at a stage when the system of seismogenic ruptures accumulated during the seismiccycle has almost reached its critical value</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>The RTL Anomaly of Seismicity before the February 6, 2023 Earthquake in Turkey</dc:title><dc:creator>Smirnov V.B.<irid>552793</irid></dc:creator><dc:creator>Petrushov A.A.<irid>153226173</irid></dc:creator><dc:creator>Mikhailov V.O.<irid>7962112</irid></dc:creator><prism:publicationName>Izvestiya. Physics of the Solid Earth</prism:publicationName><prism:issn>1069-3513</prism:issn><journalRanking type="ImpactFactor" year="2022">1</journalRanking><prism:doi>10.1134/S1069351323060204</prism:doi> <dc:publisher>Pleiades Publishing, Inc.</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>59</prism:volume><prism:number>6</prism:number><prism:startingPage>929</prism:startingPage><prism:endingPage>938</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/609344177/</prism:url><prism:ID>609344177/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-08 14:32:39</created> <attachments><url>https://istina.msu.ru/download/609344788/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Anomalous Picosecond Optical Transmittance Dynamics in Au-Bi:YIG Hybrid Metasurface</dc:title><dc:creator>Kiryanov M.A.<irid>86017542</irid></dc:creator><dc:creator>Ostanin G.S.<irid>370003264</irid></dc:creator><dc:creator>Dolgova T.V.<irid>578371</irid></dc:creator><dc:creator>Inoue M.<irid>2052947</irid></dc:creator><dc:creator>Fedyanin A.A.<irid>238541</irid></dc:creator><prism:publicationName>JETP Letters</prism:publicationName><prism:issn>0021-3640</prism:issn><journalRanking type="ImpactFactor" year="2022">1.3</journalRanking><prism:doi>10.1134/s0021364022603220</prism:doi> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:startingPage>1</prism:startingPage><prism:endingPage>6</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/535014559/</prism:url><prism:ID>535014559/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-02-10 13:56:34</created> <attachments><url>https://istina.msu.ru/download/564232850/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The sub- and picosecond optical response dynamics of the metal-dielectric metasurface based on gold nanospheres placed in a layer of bismuth-substituted yttrium iron garnet has been studied via the pumpprobe femtosecond spectroscopy with time resolution. It is shown that the plasmon modes of the metasurface demonstrate bulk gold dynamics, while the observed relaxation of the polariton mode is slowed down by several picoseconds. The difference arise because of the plasmon and polariton modes by the probe beam.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Nonlinear Response of Diluted Gases to an Ultraviolet Femtosecond Pulse</dc:title><dc:creator>Vrublevskaya N.R.<irid>412384647</irid></dc:creator><dc:creator>Shipilo D.E.<irid>12001711</irid></dc:creator><dc:creator>Nikolaeva I.A.<irid>56757026</irid></dc:creator><dc:creator>Panov N.A.<irid>387487</irid></dc:creator><dc:creator>Kosareva O.G.<irid>394701</irid></dc:creator><prism:publicationName>JETP Letters</prism:publicationName><prism:issn>0021-3640</prism:issn><journalRanking type="ImpactFactor" year="2022">1.3</journalRanking><prism:doi>10.1134/s0021364023600301</prism:doi> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>117</prism:volume><prism:number>6</prism:number><prism:startingPage>408</prism:startingPage><prism:endingPage>413</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/556344670/</prism:url><prism:ID>556344670/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-10 15:06:38</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Terahertz Third-Harmonic Generation in Topological Insulators Based on Bismuth and Antimony Chalcogenides</dc:title><dc:creator>Kuznetsov K.A.<irid>710497</irid></dc:creator><dc:creator>Kuznetsov P.I.<irid>8913210</irid></dc:creator><dc:creator>Frolov A.D.<irid>180375380</irid></dc:creator><dc:creator>Konovalov A.M.<irid>602307890</irid></dc:creator><dc:creator>Kovaleva P.M.<irid>505485136</irid></dc:creator><dc:creator>Kitaeva G.Kh<irid>431552</irid></dc:creator><prism:publicationName>JETP Letters</prism:publicationName><prism:issn>0021-3640</prism:issn><journalRanking type="ImpactFactor" year="2022">1.3</journalRanking><prism:doi>10.1134/S0021364023602579</prism:doi> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>118</prism:volume><prism:number>6</prism:number><prism:startingPage>395</prism:startingPage><prism:endingPage>400</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/602307891/</prism:url><prism:ID>602307891/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-10-16 15:19:10</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Terahertz third-harmonic generation in topological insulators based on bismuth and antimony chalcogenides has been experimentally investigated. It has been found that the third-harmonic conversion efficiency is inversely proportional to the electron Fermi energy; among the materials under study, antimony telluride has the highest conversion efficiency.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Effect of “Refraction” of Magnetic Domain Boundaries at Electrical Inhomogeneities</dc:title><dc:creator>Podkletnova A.A.<irid>592869689</irid></dc:creator><dc:creator>Kolyushenkov M.A.<irid>552322143</irid></dc:creator><dc:creator>Myasnikov N.V.<irid>348362736</irid></dc:creator><dc:creator>Nikolaeva E.P.<irid>472013</irid></dc:creator><dc:creator>Kaminskiy A.S.<irid>201207762</irid></dc:creator><dc:creator>Nikolaev A.V.<irid>472131</irid></dc:creator><dc:creator>Pyatakov A.P.<irid>405848</irid></dc:creator><prism:publicationName>JETP Letters</prism:publicationName><prism:issn>0021-3640</prism:issn><journalRanking type="ImpactFactor" year="2022">1.3</journalRanking><prism:doi>10.1134/S0021364023602129</prism:doi> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>118</prism:volume><prism:number>4</prism:number><prism:startingPage>262</prism:startingPage><prism:endingPage>265</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/592852409/</prism:url><prism:ID>592852409/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-11 14:15:10</created> <attachments><url>https://istina.msu.ru/download/595571458/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Рассмотрена разновидность магнитоэлектрического эффекта, проявляющаяся как “преломление” доменных границ в месте локализации электрода, напыленного на поверхность пленки феррита граната.Относительный “показатель преломления” зависит от приложенного к электроду электрического напряжения и меняется в пределах от 0.6 до 1.2. В качестве механизма эффекта предложено электроиндуцированное изменение поверхностной энергии доменной границы за счет неоднородного магнитоэлектрического взаимодействия.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>High-Frequency Shift and Extension of the Terahertz Radiation Spectrum up to 10 THz During Optical Rectification of High-Power Few-Cycle Near-Infrared Femtosecond Pump Radiation in a BNA Crystal</dc:title><dc:creator>Rumiantsev B.V.<irid>142395702</irid></dc:creator><dc:creator>Zhidovtsev N.A.<irid>146314360</irid></dc:creator><dc:creator>Pushkin A.V.<irid>17881827</irid></dc:creator><dc:creator>Lobushkin E.A.<irid>573937187</irid></dc:creator><dc:creator>Shulyndin P.A.<irid>593778888</irid></dc:creator><dc:creator>Suleimanova D.Z.<irid>401742460</irid></dc:creator><dc:creator>Savel’ev-Trofimov A.B.<irid>386630</irid></dc:creator><dc:creator>Potemkin F.V.<irid>387194</irid></dc:creator><prism:publicationName>JETP Letters</prism:publicationName><prism:issn>0021-3640</prism:issn><journalRanking type="ImpactFactor" year="2022">1.3</journalRanking><prism:doi>10.1134/s0021364023603433</prism:doi> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>118</prism:volume><prism:number>11</prism:number><prism:startingPage>800</prism:startingPage><prism:endingPage>806</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/628238074/</prism:url><prism:ID>628238074/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-08 22:39:13</created> <attachments><url>https://istina.msu.ru/download/628238108/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The generation of terahertz radiation in a BNA crystal pumped by 1.24-µm femtosecond laser radiation from a Cr:forsterite laser system with a pulse duration of 100 and 35 fs and a pump density of 10 mJ/cm2 has been realized. The achieved generation efficiency is 0.1%. It is found that a decrease in the pump pulse duration from 100 to 35 fs leads to the generation of high-frequency components in the ranges of 2.5–6.5 THz and 9‒10.5 THz in the generated radiation spectrum. Simulation of the terahertz radiation generation based on the solution of Maxwell’s equations by the finite-difference time-domain method has made it possible to adequately describe the measured spectra. The generation of broadband high-frequency terahertz radiation in the BNA crystal pumped by the Cr:forsterite laser system allows one to consider this schematic as an alternative to sources based on the BNA crystal pumped by a Ti:sapphire laser system.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Effect of the Introduction of a Chlorine Atom into the Aromatic Fragment of the 1,3-Diketone Ligand on the Luminescence Efficiency of Novel Eu3+ Ion Coordination Compounds</dc:title><dc:creator>Tsorieva A.V.<irid>533712270</irid></dc:creator><dc:creator>Polikovskiy T.A.<irid>535273978</irid></dc:creator><dc:creator>Metlin M.T.<irid>170094980</irid></dc:creator><dc:creator>Korshunov V.M.<irid>38250550</irid></dc:creator><dc:creator>Taydakov I.V.<irid>170094977</irid></dc:creator><prism:publicationName>Journal of Applied Spectroscopy</prism:publicationName><prism:issn>0021-9037</prism:issn><journalRanking type="ImpactFactor" year="2022">.7</journalRanking><prism:doi>10.1007/s10812-023-01539-1</prism:doi> <dc:publisher>Springer-Verlag</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>90</prism:volume><prism:number>2</prism:number><prism:startingPage>325</prism:startingPage><prism:endingPage>333</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/628518187/</prism:url><prism:ID>628518187/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-09 18:54:06</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>A study was carried out on the effect of a heavy chlorine atom introduced into the aromatic fragment of a 1,3-diketone ligand in Eu3+ coordination compounds on the spectral and luminescent properties of complex compounds. The data obtained from the absorption, optical excitation, fluorescence, and phosphorescence spectra as well as from the kinetics of the luminescence intensity permit estimation of the efficiency of energy transfer processes within the compounds studied. Introduction of a heavy chlorine atom was found to raise the energy of the first excited singlet state from 24,500 to 26,000 cm–1 but not affect the energy of the triplet level of the ligand. Furthermore, introduction of a chlorine atom leads to a decrease in the nonradiative relaxation constant (from 1290 to 840 s–1) and thereby triples the luminescence quantum yield from 23 to 64%. Hence, a new approach for the rational construction of useful coordination compounds of Eu3+ ions with 1,3-diketone ligands has been developed consisting of the substitution of a hydrogen atom by a heavy chlorine atom in the aromatic fragment of the ligand.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Influence of optical clearing agents on the scattering properties of human nail bed and blood microrheological properties: in vivo and in vitro study</dc:title><dc:creator>Мольдон П.А.<irid>611772425</irid></dc:creator><dc:creator>Ермолинский П.Б.<irid>79849412</irid></dc:creator><dc:creator>Луговцов А.Е.<irid>48292370</irid></dc:creator><dc:creator>Дьяченко П.А.<irid>537027663</irid></dc:creator><dc:creator>Лазарева Е.Н.<irid>55840576</irid></dc:creator><dc:creator>Сурков Ю.И.<irid>631044778</irid></dc:creator><dc:creator>Гурфинкель Ю.И.<irid>87057900</irid></dc:creator><dc:creator>Тучин В.В.<irid>20254935</irid></dc:creator><dc:creator>Приезжев А.В.<irid>483629</irid></dc:creator><prism:publicationName>Journal of Biophotonics</prism:publicationName><prism:issn>1864-063X</prism:issn><journalRanking type="ImpactFactor" year="2022">2.8</journalRanking> <dc:publisher>Wiley - VCH Verlag GmbH & CO. KGaA</dc:publisher><prism:publicationDate>2024</prism:publicationDate><prism:url>http://istina.msu.ru/publications/article/631044780/</prism:url><prism:ID>631044780/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-19 00:10:23</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>In this study, we aimed to evaluate the effects of different optical clearing agents on optical clearing using optical coherence tomography, on changes of red blood cell microrheologic properties using diffuse light scattering and on changes in capillary blood flow in the human nail bed using digital capillaroscopy.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Automated tuning for the parameters of linear solvers</dc:title><dc:creator>Petrushov A.<irid>153226173</irid></dc:creator><dc:creator>Krasnopolsky B.<irid>219574</irid></dc:creator><prism:publicationName>Journal of Computational Physics</prism:publicationName><prism:issn>0021-9991</prism:issn><journalRanking type="ImpactFactor" year="2022">4.1</journalRanking><prism:doi>10.1016/j.jcp.2023.112533</prism:doi> <dc:publisher>Academic Press</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>494</prism:volume><prism:url>http://istina.msu.ru/publications/article/539231135/</prism:url><prism:ID>539231135/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-03-05 03:25:56</created> <attachments><url>https://istina.msu.ru/download/539231148/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Directional sensitivity of the NEWSdm experiment to cosmic ray boosted dark matter</dc:title><dc:creator>Agafonova N.Y.<irid>328065474</irid></dc:creator><dc:creator>Alexandrov A.<irid></irid></dc:creator><dc:creator>Anokhina A.M.<irid></irid></dc:creator><dc:creator>Asada T.<irid></irid></dc:creator><dc:creator>Ashikhmin V.V.<irid></irid></dc:creator><dc:creator>Boccia V.<irid></irid></dc:creator><dc:creator>Centanni D.<irid></irid></dc:creator><dc:creator>Chernyavskii M.M.<irid></irid></dc:creator><dc:creator>DAmbrosio N.<irid></irid></dc:creator><dc:creator>Lellis G.De<irid></irid></dc:creator><dc:creator>Crescenzo A.Di<irid></irid></dc:creator><dc:creator>Dowdy Y.C.<irid>555775957</irid></dc:creator><dc:creator>Dmitrievski S.<irid></irid></dc:creator><dc:creator>Enikeev R.I.<irid></irid></dc:creator><dc:creator>Galati G.<irid></irid></dc:creator><dc:creator>Galkin V.I.<irid></irid></dc:creator><dc:creator>Golovatiuk A.<irid>555775958</irid></dc:creator><dc:creator>Gorbunov S.A.<irid></irid></dc:creator><dc:creator>Gornushkin Y.<irid></irid></dc:creator><dc:creator>Guler A.M.<irid></irid></dc:creator><dc:creator>Gulyaeva V.V.<irid>365474120</irid></dc:creator><dc:creator>Iuliano A.<irid>328273532</irid></dc:creator><dc:creator>Khalikov E.V.<irid></irid></dc:creator><dc:creator>Kim S.H.<irid></irid></dc:creator><dc:creator>Konovalova N.S.<irid></irid></dc:creator><dc:creator>Krasilnikova Y.O.<irid></irid></dc:creator><dc:creator>Lauria A.<irid></irid></dc:creator><dc:creator>Lee K.Y.<irid></irid></dc:creator><dc:creator>Loschiavo V.P.<irid>459149149</irid></dc:creator><dc:creator>Managadze A.K.<irid></irid></dc:creator><dc:creator>Miloi A.<irid></irid></dc:creator><dc:creator>Montesi M.C.<irid></irid></dc:creator><dc:creator>Naka T.<irid></irid></dc:creator><dc:creator>Okateva N.M.<irid></irid></dc:creator><dc:creator>Park B.D.<irid></irid></dc:creator><dc:creator>Podgrudkov D.A.<irid></irid></dc:creator><dc:creator>Polukhina N.G.<irid></irid></dc:creator><dc:creator>Roganova T.M.<irid></irid></dc:creator><dc:creator>Rosa G.<irid></irid></dc:creator><dc:creator>Samoilov M.A.<irid></irid></dc:creator><dc:creator>Sadykov Z.T.<irid></irid></dc:creator><dc:creator>Saeki K.<irid>19110118</irid></dc:creator><dc:creator>Sato O.<irid></irid></dc:creator><dc:creator>Shakiryanova I.R.<irid></irid></dc:creator><dc:creator>Shchedrina T.V.<irid></irid></dc:creator><dc:creator>Shiraishi T.<irid>3293657</irid></dc:creator><dc:creator>Sohn J.Y.<irid></irid></dc:creator><dc:creator>Sotnikov A.<irid></irid></dc:creator><dc:creator>Starkov N.I.<irid></irid></dc:creator><dc:creator>Starkova E.N.<irid></irid></dc:creator><dc:creator>Strekalina D.M.<irid>555775962</irid></dc:creator><dc:creator>Tioukov V.<irid>5641128</irid></dc:creator><dc:creator>Ursov E.D.<irid></irid></dc:creator><dc:creator>Ustyuzhanin A.<irid></irid></dc:creator><dc:creator>Vasina S.<irid></irid></dc:creator><dc:creator>Voronkov R.A.<irid></irid></dc:creator><dc:creator>Yoon C.S.<irid></irid></dc:creator><prism:publicationName>Journal of Cosmology and Astroparticle Physics</prism:publicationName><prism:issn>1475-7516</prism:issn><journalRanking type="ImpactFactor" year="2022">6.4</journalRanking> <dc:publisher>IOP Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>2023</prism:volume><prism:url>http://istina.msu.ru/publications/article/581479505/</prism:url><prism:ID>581479505/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-07-29 03:16:15</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>On the contribution of cosmic-ray interactions in the circumgalactic gas to the observed high-energy neutrino flux</dc:title><dc:creator>Kalashev Oleg<irid>2355279</irid></dc:creator><dc:creator>Martynenko Nickolay<irid>491259363</irid></dc:creator><dc:creator>Troitsky Sergey<irid>517583523</irid></dc:creator><prism:publicationName>Journal of Cosmology and Astroparticle Physics</prism:publicationName><prism:issn>1475-7516</prism:issn><journalRanking type="ImpactFactor" year="2022">6.4</journalRanking><prism:doi>10.1088/1475-7516/2023/03/053</prism:doi> <dc:publisher>IOP Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>2023</prism:volume><prism:number>03</prism:number><prism:startingPage>053</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/546633304/</prism:url><prism:ID>546633304/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-04-02 16:01:32</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Directional Sensitivity of the NEWSdm Experiment to Cosmic Ray Boosted Dark Matter</dc:title><dc:creator>Agafonova N.Y.<irid>328065474</irid></dc:creator><dc:creator>Alexandrov A.<irid></irid></dc:creator><dc:creator>Anokhina A.M.<irid>394331</irid></dc:creator><dc:creator>Asada T.<irid></irid></dc:creator><dc:creator>Ashikhmin V.V.<irid></irid></dc:creator><dc:creator>Boccia V.<irid></irid></dc:creator><dc:creator>Centanni D.<irid></irid></dc:creator><dc:creator>Chernyavskii M.M.<irid>394608</irid></dc:creator><dc:creator>DAmbrosio N.<irid></irid></dc:creator><dc:creator>Lellis G.De<irid></irid></dc:creator><dc:creator>Crescenzo A.Di<irid></irid></dc:creator><dc:creator>Dowdy Y.C.<irid>555775957</irid></dc:creator><dc:creator>Dmitrievski S.<irid></irid></dc:creator><dc:creator>Enikeev R.I.<irid>394599</irid></dc:creator><dc:creator>Galati G.<irid></irid></dc:creator><dc:creator>Galkin V.I.<irid>394024</irid></dc:creator><dc:creator>Golovatiuk A.<irid>555775958</irid></dc:creator><dc:creator>Gorbunov S.A.<irid></irid></dc:creator><dc:creator>Gornushkin Y.<irid>394596</irid></dc:creator><dc:creator>Guler A.M.<irid></irid></dc:creator><dc:creator>Gulyaeva V.V.<irid>365474120</irid></dc:creator><dc:creator>Iuliano A.<irid>328273532</irid></dc:creator><dc:creator>Khalikov E.V.<irid>30933205</irid></dc:creator><dc:creator>Kim S.H.<irid></irid></dc:creator><dc:creator>Konovalova N.S.<irid></irid></dc:creator><dc:creator>Krasilnikova Y.O.<irid></irid></dc:creator><dc:creator>Lauria A.<irid></irid></dc:creator><dc:creator>Lee K.Y.<irid></irid></dc:creator><dc:creator>Loschiavo V.P.<irid>459149149</irid></dc:creator><dc:creator>Managadze A.K.<irid>393516</irid></dc:creator><dc:creator>Miloi A.<irid></irid></dc:creator><dc:creator>Montesi M.C.<irid></irid></dc:creator><dc:creator>Naka T.<irid></irid></dc:creator><dc:creator>Okateva N.M.<irid>4491186</irid></dc:creator><dc:creator>Park B.D.<irid></irid></dc:creator><dc:creator>Podgrudkov D.A.<irid>350224240</irid></dc:creator><dc:creator>Polukhina N.G.<irid>30693906</irid></dc:creator><dc:creator>Roganova T.M.<irid>393396</irid></dc:creator><dc:creator>Rosa G.<irid>144906392</irid></dc:creator><dc:creator>Samoilov M.A.<irid>401745729</irid></dc:creator><dc:creator>Sadykov Z.T.<irid></irid></dc:creator><dc:creator>Saeki K.<irid>19110118</irid></dc:creator><dc:creator>Sato O.<irid></irid></dc:creator><dc:creator>Shakiryanova I.R.<irid>4491189</irid></dc:creator><dc:creator>Shchedrina T.V.<irid>3818738</irid></dc:creator><dc:creator>Shiraishi T.<irid>3293657</irid></dc:creator><dc:creator>Sohn J.Y.<irid></irid></dc:creator><dc:creator>Sotnikov A.<irid>600176661</irid></dc:creator><dc:creator>Starkov N.I.<irid></irid></dc:creator><dc:creator>Starkova E.N.<irid></irid></dc:creator><dc:creator>Strekalina D.M.<irid>555775962</irid></dc:creator><dc:creator>Tioukov V.<irid>5641128</irid></dc:creator><dc:creator>Ursov E.D.<irid>253994105</irid></dc:creator><dc:creator>Ustyuzhanin A.<irid></irid></dc:creator><dc:creator>Vasina S.<irid></irid></dc:creator><dc:creator>Voronkov R.A.<irid></irid></dc:creator><dc:creator>Yoon C.S.<irid></irid></dc:creator><prism:publicationName>Journal of Cosmology and Astroparticle Physics</prism:publicationName><prism:issn>1475-7516</prism:issn><journalRanking type="ImpactFactor" year="2022">6.4</journalRanking><prism:doi>10.1088/1475-7516/2023/07/067</prism:doi> <dc:publisher>IOP Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>2023</prism:volume><prism:url>http://istina.msu.ru/publications/article/581764166/</prism:url><prism:ID>581764166/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-07-29 17:48:05</created> <attachments><url>https://istina.msu.ru/download/586812529/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>We present a study of a directional search for Dark Matter boosted forward when scattered by cosmic-ray nuclei, using a module of the NEWSdm experiment. The boosted Dark Matter flux at the edge of the Earth's atmosphere is expected to be pointing to the Galactic Center, with a flux 15 to 20 times larger than in the transverse direction.The module of the NEWSdm experiment consists of a 10 kg stack of Nano Imaging Trackers, i.e. newly developed nuclear emulsions with AgBr crystal sizes down to a few tens of nanometers. The module is installed on an equatorial telescope. The relatively long recoil tracks induced by boosted Dark Matter, combined with the nanometric granularity of the emulsion, result in an extremely low background. This makes an installation at the INFN Gran Sasso laboratory, both on the surface and underground, viable. A comparison between the two locations is made. The angular distribution of nuclear recoils induced by boosted Dark Matter in the emulsion films at the surface laboratory is expected to show an excess with a factor of 3.5 in the direction of the Galactic Center. This excess allows for a Dark Matter search with directional sensitivity. The surface laboratory configuration prevents the deterioration of the signal in the rock overburden and it emerges as the most powerful approach for a directional observation of boosted Dark Matter with high sensitivity. We show that, with this approach, a 10 kg module of the NEWSdm experiment exposed for one year at the Gran Sasso surface laboratory can probe Dark Matter masses between 1 keV/c2 and 1 GeV/c2 and cross-section values down to 10-30 cm2 with a directional sensitive search.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Measurement of the CKM angle γ using the B± → D*h± channels</dc:title><dc:creator>Akar S.<irid></irid></dc:creator><dc:creator>Akiba K.<irid>2451682</irid></dc:creator><dc:creator>Alexander M.<irid></irid></dc:creator><dc:creator>Amato S.<irid>19814208</irid></dc:creator><dc:creator>An L.<irid>391077561</irid></dc:creator><dc:creator>Andersson M.<irid>589516027</irid></dc:creator><dc:creator>Ao D.<irid>589516028</irid></dc:creator><dc:creator>Artamonov A.<irid>519567606</irid></dc:creator><dc:creator>Barbosa I.R.<irid>619515631</irid></dc:creator><dc:creator>Barlow R.J.<irid>589516029</irid></dc:creator><dc:creator>Barsuk S.<irid>589516030</irid></dc:creator><dc:creator>Baryshnikov F.<irid>8507396</irid></dc:creator><dc:creator>Beck A.<irid>412371879</irid></dc:creator><dc:creator>Belin S.<irid>158431789</irid></dc:creator><dc:creator>Belous K.<irid>589516033</irid></dc:creator><dc:creator>Belov I.<irid>6739792</irid></dc:creator><dc:creator>Belyaev I.<irid>332280712</irid></dc:creator><dc:creator>Berezhnoy A.<irid></irid></dc:creator><dc:creator>Betti F.<irid>589516034</irid></dc:creator><dc:creator>Blanc F.<irid>589516035</irid></dc:creator><dc:creator>Blank J.E.<irid>619515632</irid></dc:creator><dc:creator>Bocharnikov V.<irid>51748660</irid></dc:creator><dc:creator>Boldyrev A.<irid></irid></dc:creator><dc:creator>Bondar N.<irid></irid></dc:creator><dc:creator>Borsuk J.T.<irid>589516036</irid></dc:creator><dc:creator>Boyer A.<irid>589516037</irid></dc:creator><dc:creator>Braun S.<irid>589516038</irid></dc:creator><dc:creator>Brown J.<irid>596910</irid></dc:creator><dc:creator>Butkevich A.<irid>589516039</irid></dc:creator><dc:creator>Cai H.<irid>589516040</irid></dc:creator><dc:creator>Carbone A.<irid>140781553</irid></dc:creator><dc:creator>Chapman M.G.<irid>2092389</irid></dc:creator><dc:creator>Chen C.<irid></irid></dc:creator><dc:creator>Chen S.<irid></irid></dc:creator><dc:creator>Chernov A.<irid></irid></dc:creator><dc:creator>Chernyshenko S.<irid>373977907</irid></dc:creator><dc:creator>Vidal X.Cid<irid></irid></dc:creator><dc:creator>Collins P.<irid>7329464</irid></dc:creator><dc:creator>Corti G.<irid>589516043</irid></dc:creator><dc:creator>Dadabaev S.<irid>589516044</irid></dc:creator><dc:creator>Dai L.<irid>589516045</irid></dc:creator><dc:creator>Dai X.<irid>6028627</irid></dc:creator><dc:creator>Daniel J.<irid></irid></dc:creator><dc:creator>Danilina A.<irid></irid></dc:creator><dc:creator>Davidson A.<irid></irid></dc:creator><dc:creator>Davies J.E.<irid>589516046</irid></dc:creator><dc:creator>Davis A.<irid>3439083</irid></dc:creator><dc:creator>Dean C.T.<irid>589516047</irid></dc:creator><dc:creator>Denysenko V.<irid>589516048</irid></dc:creator><dc:creator>Diachkov I.<irid>577751</irid></dc:creator><dc:creator>Didenko S.<irid></irid></dc:creator><dc:creator>Ding S.<irid></irid></dc:creator><dc:creator>Docheva A.D.<irid>619515634</irid></dc:creator><dc:creator>Dolmatov A.<irid></irid></dc:creator><dc:creator>Dong C.<irid></irid></dc:creator><dc:creator>Douglas L.<irid>357774658</irid></dc:creator><dc:creator>Duan W.<irid>11838325</irid></dc:creator><dc:creator>Duk V.<irid>21770189</irid></dc:creator><dc:creator>Dzyuba A.<irid>3699220</irid></dc:creator><dc:creator>Easo S.<irid></irid></dc:creator><dc:creator>Eckstein E.<irid>9019481</irid></dc:creator><dc:creator>Esen S.<irid>357774661</irid></dc:creator><dc:creator>Evans T.<irid>286826637</irid></dc:creator><dc:creator>Fan Y.<irid></irid></dc:creator><dc:creator>Fang B.<irid>589516049</irid></dc:creator><dc:creator>Feng M.<irid>8912155</irid></dc:creator><dc:creator>Feo M.<irid>589516050</irid></dc:creator><dc:creator>Filippov S.<irid></irid></dc:creator><dc:creator>Fischer K.M.<irid>589516051</irid></dc:creator><dc:creator>Fitzgerald D.S.<irid>589516052</irid></dc:creator><dc:creator>Fontana M.<irid></irid></dc:creator><dc:creator>Frank M.<irid></irid></dc:creator><dc:creator>Frei C.<irid>7163449</irid></dc:creator><dc:creator>Fu J.<irid>7953803</irid></dc:creator><dc:creator>Gabriel E.<irid>589516053</irid></dc:creator><dc:creator>Gandini P.<irid></irid></dc:creator><dc:creator>Gao H.<irid></irid></dc:creator><dc:creator>Gao R.<irid></irid></dc:creator><dc:creator>Gao Y.<irid></irid></dc:creator><dc:creator>Gao Y.<irid></irid></dc:creator><dc:creator>Gibson V.<irid>28824058</irid></dc:creator><dc:creator>Gilman A.L.<irid>589516054</irid></dc:creator><dc:creator>Glaser F.C.<irid>619515636</irid></dc:creator><dc:creator>Golubkov D.<irid>178037104</irid></dc:creator><dc:creator>Golutvin A.<irid>2230025</irid></dc:creator><dc:creator>Gong G.<irid>589516055</irid></dc:creator><dc:creator>Gorelov I.V.<irid>11790673</irid></dc:creator><dc:creator>Gromov S.<irid>85823390</irid></dc:creator><dc:creator>Gu C.<irid>589516056</irid></dc:creator><dc:creator>Guliaeva V.<irid>365474120</irid></dc:creator><dc:creator>Guseinov A.K.<irid>619515638</irid></dc:creator><dc:creator>Gushchin E.<irid>589516057</irid></dc:creator><dc:creator>Guz Y.<irid>459149107</irid></dc:creator><dc:creator>Han Q.<irid>589516059</irid></dc:creator><dc:creator>Han X.<irid>3490964</irid></dc:creator><dc:creator>Hao L.<irid></irid></dc:creator><dc:creator>Harrison T.<irid>589516060</irid></dc:creator><dc:creator>He J.<irid>357774672</irid></dc:creator><dc:creator>Hennessy K.<irid>117532724</irid></dc:creator><dc:creator>Hou R.<irid>589516061</irid></dc:creator><dc:creator>Hou Y.<irid>11675031</irid></dc:creator><dc:creator>Hu J.<irid></irid></dc:creator><dc:creator>Hu J.<irid></irid></dc:creator><dc:creator>Hu W.<irid></irid></dc:creator><dc:creator>Hu X.<irid></irid></dc:creator><dc:creator>Huang W.<irid>452267553</irid></dc:creator><dc:creator>Huang X.<irid></irid></dc:creator><dc:creator>Ilin D.<irid>9323051</irid></dc:creator><dc:creator>Iniukhin A.<irid>8629629</irid></dc:creator><dc:creator>Ishteev A.<irid>247550721</irid></dc:creator><dc:creator>Ivshin K.<irid></irid></dc:creator><dc:creator>Jakobsen S.<irid>589516063</irid></dc:creator><dc:creator>Jiang E.<irid>619515639</irid></dc:creator><dc:creator>Jiang X.<irid></irid></dc:creator><dc:creator>Jiang Y.<irid></irid></dc:creator><dc:creator>Jiang Y.J.<irid>619515640</irid></dc:creator><dc:creator>John M.<irid>7072027</irid></dc:creator><dc:creator>Johnson D.<irid></irid></dc:creator><dc:creator>Jones C.R.<irid></irid></dc:creator><dc:creator>Jones T.P.<irid>589516064</irid></dc:creator><dc:creator>Kang Y.<irid>1513202</irid></dc:creator><dc:creator>Karpenkov D.<irid>80026798</irid></dc:creator><dc:creator>Karpov M.<irid>28444302</irid></dc:creator><dc:creator>Keller D.M.<irid>589516065</irid></dc:creator><dc:creator>Kharisova A.<irid>589516066</irid></dc:creator><dc:creator>Kholodenko S.<irid>6618899</irid></dc:creator><dc:creator>Kondybayeva A.<irid>468632888</irid></dc:creator><dc:creator>Kopecna R.<irid>357774682</irid></dc:creator><dc:creator>Korolev M.<irid>1504582</irid></dc:creator><dc:creator>Kostiuk I.<irid>17907779</irid></dc:creator><dc:creator>Kot O.<irid>589516068</irid></dc:creator><dc:creator>Kozachuk A.<irid>19900052</irid></dc:creator><dc:creator>Kravchenko P.<irid>392951664</irid></dc:creator><dc:creator>Kravchuk L.<irid></irid></dc:creator><dc:creator>Kreps M.<irid>357774683</irid></dc:creator><dc:creator>Krupa W.<irid>589516070</irid></dc:creator><dc:creator>Kudryavtsev V.<irid>17283132</irid></dc:creator><dc:creator>Kulikova E.<irid></irid></dc:creator><dc:creator>Kutsenko B.K.<irid>619515641</irid></dc:creator><dc:creator>Lai A.<irid>420879</irid></dc:creator><dc:creator>Lane J.J.<irid>589516072</irid></dc:creator><dc:creator>Lane R.<irid></irid></dc:creator><dc:creator>Langer J.<irid>549876</irid></dc:creator><dc:creator>Lee S.H.<irid>88974463</irid></dc:creator><dc:creator>Leflat A.<irid>59150749</irid></dc:creator><dc:creator>Li A<irid>619515642</irid></dc:creator><dc:creator>Li H<irid>619515643</irid></dc:creator><dc:creator>Li K<irid>619515644</irid></dc:creator><dc:creator>Li L<irid>619515645</irid></dc:creator><dc:creator>Li P<irid>619515646</irid></dc:creator><dc:creator>Li P R.<irid>619515647</irid></dc:creator><dc:creator>Li S<irid>619515648</irid></dc:creator><dc:creator>Li T<irid>619515649</irid></dc:creator><dc:creator>Li T<irid>619515650</irid></dc:creator><dc:creator>Li Y<irid>619515651</irid></dc:creator><dc:creator>Li Z<irid>619515652</irid></dc:creator><dc:creator>Liang X.<irid></irid></dc:creator><dc:creator>Lin C.<irid></irid></dc:creator><dc:creator>Lin T.<irid></irid></dc:creator><dc:creator>Litvinov R.<irid>11986248</irid></dc:creator><dc:creator>Liu G.<irid></irid></dc:creator><dc:creator>Liu H.<irid></irid></dc:creator><dc:creator>Liu K.<irid></irid></dc:creator><dc:creator>Liu Q.<irid></irid></dc:creator><dc:creator>Liu S.<irid></irid></dc:creator><dc:creator>Liu Y.<irid></irid></dc:creator><dc:creator>Loi A.<irid>237729891</irid></dc:creator><dc:creator>Long T.<irid>619515653</irid></dc:creator><dc:creator>Lopes J.H.<irid>31225428</irid></dc:creator><dc:creator>Lu Y.<irid></irid></dc:creator><dc:creator>Lukashenko V.<irid>3641223</irid></dc:creator><dc:creator>Luo Y.<irid></irid></dc:creator><dc:creator>Lyu X.R.<irid>619515654</irid></dc:creator><dc:creator>Ma R.<irid></irid></dc:creator><dc:creator>Mackay I.<irid>619515655</irid></dc:creator><dc:creator>Maevskiy A.<irid>7745970</irid></dc:creator><dc:creator>Malinin A.<irid></irid></dc:creator><dc:creator>Maltsev T.<irid>589516080</irid></dc:creator><dc:creator>Marks J.<irid>101188204</irid></dc:creator><dc:creator>Marshall A.M.<irid>619515656</irid></dc:creator><dc:creator>Marshall P.J.<irid>619515657</irid></dc:creator><dc:creator>Mazurek M.<irid></irid></dc:creator><dc:creator>Merk M.<irid>521390096</irid></dc:creator><dc:creator>Miao D.<irid>619515658</irid></dc:creator><dc:creator>Miao H.<irid></irid></dc:creator><dc:creator>Mitchell S.E.<irid>589516083</irid></dc:creator><dc:creator>Mohammed R.A.<irid>589516084</irid></dc:creator><dc:creator>Mokhnenko S.<irid>589516085</irid></dc:creator><dc:creator>Monk M.<irid>619515659</irid></dc:creator><dc:creator>Morris A.B.<irid>589516086</irid></dc:creator><dc:creator>Morris A.G.<irid>589516087</irid></dc:creator><dc:creator>Mu H.<irid>43711162</irid></dc:creator><dc:creator>Mu Z.M.<irid>619515660</irid></dc:creator><dc:creator>Muhammad E.<irid>619515661</irid></dc:creator><dc:creator>Müller K.<irid>619515662</irid></dc:creator><dc:creator>Murray D.<irid></irid></dc:creator><dc:creator>Neufeld N.<irid>357774696</irid></dc:creator><dc:creator>Neustroev P.<irid>263745218</irid></dc:creator><dc:creator>Nikitin N.<irid></irid></dc:creator><dc:creator>Nowak G.<irid>135919832</irid></dc:creator><dc:creator>Nur H.N.<irid>619515664</irid></dc:creator><dc:creator>Obraztsov V.<irid>2480819</irid></dc:creator><dc:creator>Ovsiannikova T.<irid>589516089</irid></dc:creator><dc:creator>Panshin G.<irid>1379491</irid></dc:creator><dc:creator>Pham H.<irid>3065874</irid></dc:creator><dc:creator>Philippov A.<irid>2476557</irid></dc:creator><dc:creator>Poluektov A.<irid></irid></dc:creator><dc:creator>Polukhina N.<irid></irid></dc:creator><dc:creator>Polyakov I.<irid></irid></dc:creator><dc:creator>Ponce S.<irid>589210283</irid></dc:creator><dc:creator>Popov D.<irid></irid></dc:creator><dc:creator>Qi H.R.<irid>589516095</irid></dc:creator><dc:creator>Qian W.<irid>408963251</irid></dc:creator><dc:creator>Qin N.<irid>589516097</irid></dc:creator><dc:creator>Qu S.<irid>619515665</irid></dc:creator><dc:creator>Ratnikov F.<irid></irid></dc:creator><dc:creator>Redi F.<irid>589516098</irid></dc:creator><dc:creator>Ren Z.<irid>14863253</irid></dc:creator><dc:creator>Ricart G.R.<irid>619515666</irid></dc:creator><dc:creator>Robertson G.<irid>589516100</irid></dc:creator><dc:creator>Romanovskiy V.<irid></irid></dc:creator><dc:creator>Ryzhikov A.<irid>567348</irid></dc:creator><dc:creator>Sagidova N.<irid>589516101</irid></dc:creator><dc:creator>Salomoni M.<irid>589516102</irid></dc:creator><dc:creator>Saranin D.<irid>85546655</irid></dc:creator><dc:creator>Savrina D.<irid>1490145</irid></dc:creator><dc:creator>Schmidt B.<irid></irid></dc:creator><dc:creator>Schneider O.<irid>589516103</irid></dc:creator><dc:creator>Semennikov A.<irid>14947558</irid></dc:creator><dc:creator>Shang Y.<irid>589516104</irid></dc:creator><dc:creator>Shapkin M.<irid></irid></dc:creator><dc:creator>Shekhtman L.<irid>144905800</irid></dc:creator><dc:creator>Shen Z.<irid></irid></dc:creator><dc:creator>Sheng S.<irid>589516105</irid></dc:creator><dc:creator>Shevchenko V.<irid></irid></dc:creator><dc:creator>Shi B.<irid></irid></dc:creator><dc:creator>Simi G.<irid>10135768</irid></dc:creator><dc:creator>Simone S.<irid>308864473</irid></dc:creator><dc:creator>Smith E.<irid></irid></dc:creator><dc:creator>Smith K.<irid></irid></dc:creator><dc:creator>Smith M.<irid></irid></dc:creator><dc:creator>Sokoloff M.D.<irid></irid></dc:creator><dc:creator>Solomin A.<irid>1806552</irid></dc:creator><dc:creator>Solovev A.<irid></irid></dc:creator><dc:creator>Solovyev I.<irid></irid></dc:creator><dc:creator>Song R.<irid>1078148</irid></dc:creator><dc:creator>Song Y.<irid></irid></dc:creator><dc:creator>Song Y.<irid></irid></dc:creator><dc:creator>Song Y.S.<irid>1932830</irid></dc:creator><dc:creator>Stahl M.<irid>357774710</irid></dc:creator><dc:creator>Stahl S.<irid></irid></dc:creator><dc:creator>Stein E.N.<irid>619515668</irid></dc:creator><dc:creator>Stevens H.<irid></irid></dc:creator><dc:creator>Su Y.<irid>4701632</irid></dc:creator><dc:creator>Sun J.<irid></irid></dc:creator><dc:creator>Sun L.<irid></irid></dc:creator><dc:creator>Sun Y.<irid></irid></dc:creator><dc:creator>Tan Y.<irid></irid></dc:creator><dc:creator>Tat M.D.<irid>589516107</irid></dc:creator><dc:creator>Terentev A.<irid></irid></dc:creator><dc:creator>Thomas E.<irid>22684636</irid></dc:creator><dc:creator>Thompson D.J.D<irid>619515669</irid></dc:creator><dc:creator>Tong X.<irid>48294542</irid></dc:creator><dc:creator>Tou D.Y.<irid></irid></dc:creator><dc:creator>Tuci G.<irid></irid></dc:creator><dc:creator>Ursov E.<irid>253994105</irid></dc:creator><dc:creator>Usachov A.<irid>357774715</irid></dc:creator><dc:creator>Ustyuzhanin A.<irid></irid></dc:creator><dc:creator>Vieira D.<irid>589516111</irid></dc:creator><dc:creator>Vorobyev V.<irid></irid></dc:creator><dc:creator>Voropaev N.<irid></irid></dc:creator><dc:creator>Walsh J.<irid></irid></dc:creator><dc:creator>Wan G.<irid>619515670</irid></dc:creator><dc:creator>Wang C.<irid></irid></dc:creator><dc:creator>Wang G.<irid></irid></dc:creator><dc:creator>Wang J.<irid></irid></dc:creator><dc:creator>Wang J.<irid></irid></dc:creator><dc:creator>Wang J.<irid></irid></dc:creator><dc:creator>Wang J.<irid></irid></dc:creator><dc:creator>Wang M.<irid></irid></dc:creator><dc:creator>Wang N.W.<irid>619515671</irid></dc:creator><dc:creator>Wang R.<irid></irid></dc:creator><dc:creator>Wang X.<irid></irid></dc:creator><dc:creator>Wang Y.<irid></irid></dc:creator><dc:creator>Wang Z.<irid></irid></dc:creator><dc:creator>Wang Z.<irid></irid></dc:creator><dc:creator>Wang Z.<irid></irid></dc:creator><dc:creator>Ward J.A.<irid>589516114</irid></dc:creator><dc:creator>Wei Y.<irid></irid></dc:creator><dc:creator>White D.J.<irid>589516115</irid></dc:creator><dc:creator>Williams I.<irid>4866726</irid></dc:creator><dc:creator>Williams M.<irid></irid></dc:creator><dc:creator>Williams M.R.J<irid>619515672</irid></dc:creator><dc:creator>Williams R.<irid></irid></dc:creator><dc:creator>Wilson F.F.<irid>4919156</irid></dc:creator><dc:creator>Wu H.<irid></irid></dc:creator><dc:creator>Wu J.<irid></irid></dc:creator><dc:creator>Wu Y.<irid></irid></dc:creator><dc:creator>Xie Y.<irid></irid></dc:creator><dc:creator>Xu A.<irid></irid></dc:creator><dc:creator>Xu J.<irid></irid></dc:creator><dc:creator>Xu L.<irid></irid></dc:creator><dc:creator>Xu L.<irid></irid></dc:creator><dc:creator>Xu Z.<irid></irid></dc:creator><dc:creator>Xu Z.<irid></irid></dc:creator><dc:creator>Xu Z.<irid></irid></dc:creator><dc:creator>Yang D.<irid></irid></dc:creator><dc:creator>Yang S.<irid></irid></dc:creator><dc:creator>Yang X.<irid></irid></dc:creator><dc:creator>Yang Y.<irid></irid></dc:creator><dc:creator>Yang Z.<irid></irid></dc:creator><dc:creator>Yin H.<irid></irid></dc:creator><prism:publicationName>Journal of High Energy Physics</prism:publicationName><prism:issn>1029-8479</prism:issn><journalRanking type="ImpactFactor" year="2022">5.4</journalRanking><prism:doi>10.1007/jhep12(2023)013</prism:doi> <dc:publisher>IOP Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>2023</prism:volume><prism:number>12</prism:number><prism:url>http://istina.msu.ru/publications/article/619515677/</prism:url><prism:ID>619515677/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-13 18:02:42</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>An influence of the Dzyaloshinskii-Moriya interaction on the magnetization reversal process of the finite-size Co chains on Pt(664) surface</dc:title><dc:creator>Kolesnikov S.V.<irid>422121</irid></dc:creator><dc:creator>Sapronova E.S.<irid>391077987</irid></dc:creator><dc:creator>Kolesnikova I.N.<irid>1897998</irid></dc:creator><prism:publicationName>Journal of Magnetism and Magnetic Materials</prism:publicationName><prism:issn>0304-8853</prism:issn><journalRanking type="ImpactFactor" year="2022">2.7</journalRanking><prism:doi>10.1016/j.jmmm.2023.170869</prism:doi> <dc:publisher>Elsevier BV</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>579</prism:volume><prism:url>http://istina.msu.ru/publications/article/564515886/</prism:url><prism:ID>564515886/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-06-02 11:21:03</created> <attachments><url>https://istina.msu.ru/download/564515979/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Energy barriers for magnetization reversal of the finite-size Co chains on Pt(664) surface are calculated with taking the Dzyaloshinskii-Moriya interaction into account. For the numerical calculations the geodesic nudged elastic band method is employed. It has been found that the ground states of such atomic chains are noncollinear. The magnetization reversal of short atomic chains occurs without the formation of domain walls. At the same time, there are two nonequivalent ways for the magnetization reversal of longer atomic chains. The first way is the formation of clockwise domain wall (CDW) and the second way is the formation of anticlockwise domain wall (ACDW). The second way is energetically preferable. It is shown that a metastable state corresponding to the location of ACDW in the middle of the atomic chain can appear. The variation of the parameters of the Hamiltonian shows that the magnetization reversal via the CDW formation can occur only in a certain region of the parameters. The influence of the long-range dipole–dipole interaction on the energy barriers for the magnetization reversal is also investigated. It is shown that the most of the presented results can be satisfactory explained in the framework of the XY-model. The magnetic configurations of the atomic chain near the local minima and the saddle points can be approximated with simple analytical functions.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Dispersion chain of quantum mechanics equations</dc:title><dc:creator>Perepelkin E.E.<irid>3008047</irid></dc:creator><dc:creator>Sadovnikov B.I.<irid>548911</irid></dc:creator><dc:creator>Inozemtseva N.G.<irid>245078948</irid></dc:creator><dc:creator>Korepanova A.A.<irid>536328506</irid></dc:creator><prism:publicationName>Journal of Physics A: Mathematical and Theoretical</prism:publicationName><prism:issn>1751-8113</prism:issn><journalRanking type="ImpactFactor" year="2022">2.1</journalRanking><prism:doi>10.1088/1751-8121/acbd71</prism:doi> <dc:publisher>IOP Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>56</prism:volume><prism:number>14</prism:number><prism:startingPage>1</prism:startingPage><prism:endingPage>42</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/541869154/</prism:url><prism:ID>541869154/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-03-14 10:57:32</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Excitation of Semiconductor Nanosystems by Multy-Frequency Quantum Field</dc:title><dc:creator>Tereshchenko I.A.<irid>417749316</irid></dc:creator><dc:creator>Tikhonova O.V.<irid>396283</irid></dc:creator><prism:publicationName>Journal of Physics: Conference Series</prism:publicationName><prism:issn>1742-6588</prism:issn><prism:doi>10.1088/1742-6596/2494/1/012005</prism:doi> <dc:publisher>IOP Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>2494</prism:volume><prism:number>1</prism:number><prism:startingPage>012005</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/558041843/</prism:url><prism:ID>558041843/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-16 12:55:34</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>A Model of Seismic Rupture Surface of the Chignik Earthquake (Alaska, USA) July 29, 2021 Based on Satellite Radar Interferometry and GNSS</dc:title><dc:creator>Konvisar AM<irid>554049045</irid></dc:creator><dc:creator>Mikhailov VO<irid>7962112</irid></dc:creator><dc:creator>Volkova MS<irid>285519599</irid></dc:creator><dc:creator>Smirnov VB<irid>552793</irid></dc:creator><prism:publicationName>Journal of Volcanology and Seismology</prism:publicationName><prism:issn>0742-0463</prism:issn><journalRanking type="ImpactFactor" year="2022">.7</journalRanking><prism:doi>10.1134/S0742046323700276</prism:doi> <dc:publisher>Springer Verlag</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>5</prism:number><prism:startingPage>418</prism:startingPage><prism:endingPage>427</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/602289716/</prism:url><prism:ID>602289716/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-10-15 22:32:41</created> <attachments><url>https://istina.msu.ru/download/602330780/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>This paper presents a new model of seismic rupture surface for the Chignik Mw 8.2 earthquakewhich occurred off the Alaska Peninsula on July 29, 2021. The model is based on data on surface displacementsobtained by satellite radar interferometry from Sentinel-1A and 1B images and on horizontal GPS displacementsin the area of this earthquake. We used satellite radar images for the period between July 17 andAugust 10, 2021, as well as GPS data for the period between July 18 and August 8, 2021. All of these displacementsinclude both coseismic movements and some postseismic displacements. The rupture surface modelwas developed using F. Pollitz’ solution to the problem concerning the displacement field at the surface of aspherical radially stratified planet due to a rectangular rupture inside the planet. The inversion was regularizedby requiring that the direction of displacement at each element of the rupture plane be close to a specifieddirection as given by seismological data. The seismic rupture surface in this model is fitted by a plane extendingfor 225 km along strike and 126 km along dip, and which is subdivided into 48 identical elements. Accordingto the model derived here, the type of displacement is a nearly pure thrust, with the displacement in generalinvolving all of the rupture zone. The maximum slip was 5.7 m, with the mean slip as averaged over theentire rupture plane being 2.2 m. Assuming the shear modulus to be 32 GPa, we found the seismic momentbased on the parameters of the plane we have derived and on the displacements on it as 1.95 × 10^21 N m (Мw =8.13), which is near the USGS and GCMT estimates based on seismological data.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Dependence of Slippery and Elastic Properties of Thin Polymer Films on the Grafted Flexible Sidechain Amount</dc:title><dc:creator>Kazaryan Polina S.<irid>29928202</irid></dc:creator><dc:creator>Gritsevich Daniil K.<irid>430010917</irid></dc:creator><dc:creator>Gallyamov Marat O.<irid>456823</irid></dc:creator><dc:creator>Pestrikova Anastasiya A.<irid>160219559</irid></dc:creator><dc:creator>Gulin Alexander A.<irid>8423481</irid></dc:creator><dc:creator>Kirianova Alina V.<irid>493253758</irid></dc:creator><dc:creator>Kondratenko Mikhail S.<irid>3843906</irid></dc:creator><prism:publicationName>Langmuir</prism:publicationName><prism:issn>0743-7463</prism:issn><journalRanking type="ImpactFactor" year="2022">3.9</journalRanking><prism:doi>10.1021/acs.langmuir.3c00238</prism:doi> <dc:publisher>American Chemical Society</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:url>http://istina.msu.ru/publications/article/557197405/</prism:url><prism:ID>557197405/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-13 16:06:59</created> <attachments><url>https://istina.msu.ru/download/558041573/</url><url>https://istina.msu.ru/download/599592349/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>In modern life, people face a wide number of sticky problems when adhesion is highly undesirable: water and dirt stick to clothes, useful materials stick to the walls of their containers and cannot be fully used, water sticking and freezing on airplane wings affects handling and can be dangerous, biological liquids can stick and form clots inside medical devices threatening patients’ lives, etc. Slippery liquid-infused porous surfaces (SLIPSs) with pressure stable omniphobicity could help to solve these issues. Lubricant depletion from porous surface and subsequent degradation of omniphobic properties is the major problem for SLIPS. It could be resolved by attaching flexible, liquid-like sidechains to the polymer matrix. Understanding the relationship between the structure of such polymer films and wetting effects is therefore of great importance. The present work is devoted to the study of droplet pinning on crosslinked polydimethylsiloxane (PDMS) polymer films with varied amounts of attached flexible PDMS sidechains and clarification of the relationship between slippery and viscoelastic properties of the films. An one-stage approach to the synthesis of such slippery coatings on smooth and porous substrates in “eco-friendly” pressurized CO2 solutions is proposed. Pinning force and Young’s modulus (E) of the films on silicon substrates with variation of the grafted sidechains amount (x) are measured. The non-monotonic dependence of the pinning force on the amount of sidechains is obtained: the pinning force decreases at small x values (region I) and starts to increase at higher x (region II). The effects of the grafted sidechains amount, as well as matrix softening, are discussed for each case. It is demonstrated that the proposed method of film synthesis allows one to obtain thin, uniform coatings on fabrics without gluing the fibers. Such coatings with an optimal amount of PDMS sidechains demonstrate decreased sliding angles for droplets of water and aqueous alcohol solutions, as compared to PDMS coatings without grafted sidechains. The proposed technique may be of interest for deposition of coatings on porous surfaces having a complex morphology, such as textiles, aerogels, porous electrodes, etc.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Charge Transfer Kinetics of Redox-Active Microgels</dc:title><dc:creator>Fatikhova Amina V.<irid>536590315</irid></dc:creator><dc:creator>Sergeev Artem V.<irid>10906978</irid></dc:creator><dc:creator>Rudyak Vladimir Yu<irid>2652937</irid></dc:creator><dc:creator>Kozhunova Elena Yu<irid>494720</irid></dc:creator><dc:creator>Chertovich Alexander V.<irid>276987</irid></dc:creator><prism:publicationName>Langmuir</prism:publicationName><prism:issn>0743-7463</prism:issn><journalRanking type="ImpactFactor" year="2022">3.9</journalRanking><prism:doi>10.1021/acs.langmuir.3c03187</prism:doi> <dc:publisher>American Chemical Society</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>40</prism:volume><prism:number>3</prism:number><prism:startingPage>1840</prism:startingPage><prism:endingPage>1847</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/623873432/</prism:url><prism:ID>623873432/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-24 13:59:06</created> <attachments><url>https://istina.msu.ru/download/623873442/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Polymer microgel particles decorated with redox-active functional groups are a new and promising object for electrochemical applications. However, the process of charge exchange between an electrode and a microgel particle carrying numerous redox-active centers differs fundamentally from charge exchange involving only molecular species. A single act of contact between the microgel and the electrode surface may not be enough to fully discharge the microgel, and partial charge states are to be expected. Understanding the specifics of this process is crucial for the correct analysis of the data obtained from electrochemical experiments with redox-active microgel solutions. In this study, we employed coarse-grained molecular dynamics to investigate in detail the act of charge transfer from a microgel particle to a flat electrode. The simulations take into account both the mobility of functional groups carrying the charge, which depend on the microgel architecture and the charge exchange between the groups, which can accelerate the propagation of charge within the microgel volume. A set of different microgel systems were simulated in order to reveal the impact of their characteristics: fraction of redox-active groups, microgel molecular mass, cross-linker content, cross-linking topology, and solvent quality. We have found trends in microgel composition leading to the most efficient charge transfer kinetics. The obtained results would be useful for understanding experimental results and for optimizing the design of redox-active microgel particles aimed at faster discharge rates.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Quantum traps for coupling of fluorofullerene molecules</dc:title><dc:creator>Oreshkin A.I.<irid>566730</irid></dc:creator><dc:creator>Muzychenko D.A.<irid>589118</irid></dc:creator><dc:creator>Oreshkin S.I.<irid>566255</irid></dc:creator><dc:creator>Panov V.I.<irid>384662</irid></dc:creator><dc:creator>Surov V.O.<irid>534747228</irid></dc:creator><dc:creator>Maslova N.S.<irid>1067244</irid></dc:creator><dc:creator>Petukhov M.N.<irid>161223377</irid></dc:creator><prism:publicationName>Laser Physics Letters</prism:publicationName><prism:issn>1612-2011</prism:issn><journalRanking type="ImpactFactor" year="2022">1.7</journalRanking><prism:doi>10.1088/1612-202X/aca4ce</prism:doi> <dc:publisher>Wiley - VCH Verlag GmbH & CO. KGaA</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>20</prism:volume><prism:number>1</prism:number><prism:startingPage>015202</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/517627715/</prism:url><prism:ID>517627715/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2022-12-08 17:42:25</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The interaction of fluorine atoms with Cu(111) surface has been analyzed by means of scanning tunneling microscopy and x-ray photoelectron spectroscopy (XPS). A submonolayer coverage of fluorinated fullerene C60F18 has been chosen to provide a well controllable arrival of fluorine atoms on copper surface. The appearance of F-induced surface structures on the Cu(111) surface caused by defluorination of C60F18 molecules adsorbed on the surface was shown. XPS measurements unambiguously indicate the existence of chemical state of fluorine not typical for CuF2 formation. Superstructure of well ordered metastable clusters consisting of fluorofullerene molecules are formed on the Cu(111) surface as a result of the balance of two interactions: the dipole-dipole interaction between fluorofullerene molecules and the interaction of C60F18 molecules with the two-dimensional gas phase, emerging above the copper surface. Regular surface structure formed by fullerene molecules interacting through collective vibrational mode can be used for entanglement formation between two qubits each associated with ground and excited electronic states of the molecule by applying two coherent laser pulses.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Peculiarities of exciton formation in 2D semiconductor nanostructures induced by quantum electromagnetic field under nonlinear self-phase modulation</dc:title><dc:creator>Tereshchenko I.A.<irid>417749316</irid></dc:creator><dc:creator>Tikhonova O.V.<irid>396283</irid></dc:creator><prism:publicationName>Laser Physics Letters</prism:publicationName><prism:issn>1612-2011</prism:issn><journalRanking type="ImpactFactor" year="2022">1.7</journalRanking><prism:doi>10.1088/1612-202x/acd4a4</prism:doi> <dc:publisher>Wiley - VCH Verlag GmbH & CO. KGaA</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>20</prism:volume><prism:number>7</prism:number><prism:startingPage>075301</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/561095643/</prism:url><prism:ID>561095643/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-23 22:03:23</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Specific features of the excitation of a 2D semiconductor nanosystem by non-classical light in a solid state micro-resonator are found under the impact of the Kerr phase nonlinearity in the cavity. Different regimes of excitation are revealed in dependence on the efficiency of the nonlinearity. A negative impact of the nonlinear self-phase modulation on the excitation is found to be compensated by proper choice of the field frequency detuning. The possibility to controllably enhance a certain excitation channel by varying field frequency detuning is demonstrated and the value of the optimal detuning is found analytically. The effect of transfer of non-classical features from the field to the electronic subsystem is revealed. The formation of the photon-like non-classical excitonic states is demonstrated. The obtained results seem to be a basis for the creation of the light–matter interface and development of quantum information algorithms in solid state nanosystems.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Tuning Soft Mutations of the Evolution Algorithm for Optimizing the Linear Solver Parameters</dc:title><dc:creator>Petrushov A.A.<irid>153226173</irid></dc:creator><dc:creator>Krasnopolsky B.I.<irid>219574</irid></dc:creator><prism:publicationName>Lobachevskii Journal of Mathematics</prism:publicationName><prism:doi>10.1134/S1995080223080450</prism:doi> <dc:publisher>Kazanskii Gosudarstvennyi Universitet/Kazan State University</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>44</prism:volume><prism:number>8</prism:number><prism:startingPage>3148</prism:startingPage><prism:endingPage>3159</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/555212299/</prism:url><prism:ID>555212299/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-06 21:07:25</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Conformational Behavior of a Single Dipolar Chain under Stretching Force</dc:title><dc:creator>Merzliakova Tatiana Yu<irid>457132510</irid></dc:creator><dc:creator>Gordievskaya Yulia D.<irid>37378963</irid></dc:creator><dc:creator>Kramarenko Elena Yu<irid>460339</irid></dc:creator><prism:publicationName>Macromolecules</prism:publicationName><prism:issn>0024-9297</prism:issn><journalRanking type="ImpactFactor" year="2022">5.5</journalRanking><prism:doi>10.1021/acs.macromol.3c01487</prism:doi> <dc:publisher>American Chemical Society</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>56</prism:volume><prism:number>21</prism:number><prism:startingPage>8461</prism:startingPage><prism:endingPage>8473</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/612136675/</prism:url><prism:ID>612136675/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>1</val_Scopus><created>2023-11-17 13:03:04</created> <attachments><url>https://istina.msu.ru/download/613044174/</url><url>https://istina.msu.ru/download/613044176/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Растяжение одиночной дипольной цепи под действием растягивающей силы, действующей на конец цепи, изучается с использованием молекулярно-динамического моделирования и теоретических соображений. И в теории, и в моделировании диполи моделируются как две противоположно заряженные бусинки; такой подход позволяет учесть исключенный объем заряженных шариков и электростатические взаимодействия на уровне многих тел. При моделировании основное внимание уделяется конформационным и механическим реакциям полимерной глобулы, образующейся за счет корреляции флуктуаций заряда при сильных электростатических взаимодействиях. При приложении силы глобула в несколько этапов переходит в развернутый клубок. Самый яркий из них реализуется при достаточно сильных электростатических взаимодействиях, когда растяжение цепи происходит с образованием конформаций, с расположением диполей «голова к хвосту» и с образованием линейных ионных агрегатов, ориентированных вдоль вектора силы. Это состояние растянутой цепи проявляется как квазиплато на кривой растяжения-деформации. На основе анализа зависимостей деформация-напряжение, а также микроструктуры цепочки, ориентационных соотношений диполей при различных величинах растягивающей силы построена диаграмма состояний дипольной цепочки под действием растягивающей силы. Разработанная теория позволила описать наблюдаемые в моделировании режимы непрерывного и скачкообразного разворачивания дипольной цепи при f > 0,5, определяемые соотношением между конформационной энтропией, исключенным объемом и электростатическими взаимодействиями.Полученные результаты позволяют глубже понять поведение ион-содержащих полимеров при растяжении в низкополярных средах, что важно для проектирования систем, реагирующих на стимулы.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Influence of Ligand Environment Stoichiometry on NIR-Luminescence Efficiency of Sm3+, Pr3+ and Nd3+ Ions Coordination Compounds</dc:title><dc:creator>Polikovskiy Trofim<irid>535273978</irid></dc:creator><dc:creator>Korshunov Vladislav<irid>38250550</irid></dc:creator><dc:creator>Metlin Mikhail<irid>170094980</irid></dc:creator><dc:creator>Gontcharenko Viktoria<irid>100117793</irid></dc:creator><dc:creator>Metlina Darya<irid>300364913</irid></dc:creator><dc:creator>Datskevich Nikolay<irid>11985753</irid></dc:creator><dc:creator>Kiskin Mikhail<irid>332489154</irid></dc:creator><dc:creator>Belousov Yury<irid>8074406</irid></dc:creator><dc:creator>Tsorieva Alisia<irid>533712270</irid></dc:creator><dc:creator>Taydakov Ilya<irid>170094977</irid></dc:creator><prism:publicationName>Molecules</prism:publicationName><prism:issn>1420-3049</prism:issn><journalRanking type="ImpactFactor" year="2022">4.6</journalRanking><prism:doi>10.3390/molecules28155892</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>28</prism:volume><prism:number>15</prism:number><prism:startingPage>5892</prism:startingPage><prism:endingPage>5892</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/589505846/</prism:url><prism:ID>589505846/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-31 13:11:12</created> <attachments><url>https://istina.msu.ru/download/589505874/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Six new complexes of the ligand HQcy (-4-(cyclohexanecarbonyl)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one) and Ln3+ ions with emission in the near-infrared (Nd3+) or visible andnear-infrared (Sm3+, Pr3+) spectral regions were synthesized and characterized using various methods,including single crystal X-ray diffraction. The study demonstrated that both tris complexes[LnQcy3(H2O)(EtOH)] and tetrakis-acids [H3O][LnQcy4] can be synthesized by varying the syntheticconditions. The photochemical properties of the complexes were investigated experimentally andtheoretically using various molecular spectroscopy techniques and Judd–Ofelt theory. The objectivewas to quantitatively and qualitatively disclose the influence of complex stoichiometry on its luminescenceproperties. The study showed that the addition of an extra ligand molecule (in the tetrakisspecies) increased molar extinction by up to 2 times, affected the shape of photoluminescence spectra,especially of the Pr3+ complex, and increased the quantum yield of the Sm3+ complex by up to 2times. The results obtained from this study provide insights into the luminescent properties of lanthanidecoordination compounds, which are crucial for the design and development of novel photonicmaterials with tailored photophysical properties.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Design, synthesis, and evaluation of new hybrid derivatives of 5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2(1H)-one as potential dual inhibitors of blood coagulation factors Xa and XIa</dc:title><dc:creator>Skoptsova A.A.<irid>622024484</irid></dc:creator><dc:creator>Geronikaki A.<irid>4358471</irid></dc:creator><dc:creator>Novichikhina N.P.<irid>437916564</irid></dc:creator><dc:creator>Sulimov A.V.<irid>530453</irid></dc:creator><dc:creator>Ilin I.S.<irid>81175350</irid></dc:creator><dc:creator>Sulimov V.B.<irid>529501</irid></dc:creator><dc:creator>Bykov G.A.<irid>432302167</irid></dc:creator><dc:creator>Podoplelova N.A.<irid>11203194</irid></dc:creator><dc:creator>Pyankov O.V.<irid>378345674</irid></dc:creator><dc:creator>Shikhaliev K.S.<irid>10935305</irid></dc:creator><prism:publicationName>Molecules</prism:publicationName><prism:issn>1420-3049</prism:issn><journalRanking type="ImpactFactor" year="2022">4.6</journalRanking><prism:doi>10.3390/molecules29020373</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>29</prism:volume><prism:number>2</prism:number><prism:startingPage>1</prism:startingPage><prism:endingPage>18</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/622024485/</prism:url><prism:ID>622024485/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-15 23:36:10</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Applications of fluorescence spectroscopy and machine learning methods for monitoring of elimination of carbon nanoagents from the body</dc:title><dc:creator>Sarmanova O.E.<irid>46006074</irid></dc:creator><dc:creator>Kudryashov A.D.<irid>384809031</irid></dc:creator><dc:creator>Laptinskiy K.A.<irid>7105481</irid></dc:creator><dc:creator>Burikov S.A.<irid>420913</irid></dc:creator><dc:creator>Khmeleva M.Yu<irid>281328677</irid></dc:creator><dc:creator>Fedyanina A.A.<irid>281328724</irid></dc:creator><dc:creator>Dolenko S.A.<irid>551348</irid></dc:creator><dc:creator>Golubtsov P.V.<irid>421114</irid></dc:creator><dc:creator>Dolenko T.A.<irid>420914</irid></dc:creator><prism:publicationName>Optical Memory and Neural Networks (Information Optics)</prism:publicationName><prism:issn>1060-992X</prism:issn><prism:doi>10.3103/S1060992X23010046</prism:doi> <dc:publisher>Allerton Press Inc.</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>32</prism:volume><prism:number>1</prism:number><prism:startingPage>20</prism:startingPage><prism:endingPage>33</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/546892370/</prism:url><prism:ID>546892370/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-04-03 08:48:57</created> <attachments><url>https://istina.msu.ru/download/546892383/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Перевод</category><category>Исследовательская статья</category><dc:title>The influence of pH on the properties of carbon dots with different surface functionalization: sizes and photoluminescence quantum yield</dc:title><dc:creator>Khmeleva M.Yu<irid>281328677</irid></dc:creator><dc:creator>Laptinskiy K.A.<irid>7105481</irid></dc:creator><dc:creator>Dolenko T.A.<irid>420914</irid></dc:creator><prism:publicationName>Optics and Spectroscopy (English translation of Optika i Spektroskopiya)</prism:publicationName><prism:issn>0030-400X</prism:issn><journalRanking type="ImpactFactor" year="2022">.6</journalRanking><prism:doi>10.61011/EOS.2023.06.56662.104-23</prism:doi> <dc:publisher>Optical Society of America</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>131</prism:volume><prism:number>6</prism:number><prism:startingPage>752</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/621420570/</prism:url><prism:ID>621420570/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-23 20:41:13</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>In this work carbon dots synthesized by the hydrothermal method and subsequent functionalization of the surface with carboxyl and hydroxyl groups were explored. As a result of studying the optical and colloidal properties of monofunctionalized carbon dots, a significant effect of the acidity of the nanoparticle environment on them was found. It has been found that for the photoluminescence quantum yield of carbon dots the greatest changes occur in the pH range from 2 to 5 for carbon dots with carboxyl surface groups and from 8 to 12 for carbon dots with hydroxyl groups. The mechanisms of the influence of surface functional groups on the photoluminescence of carbon dots with a change in the pH of the suspension are proposed. Keywords: carbon dots, photoluminescence spectroscopy, nanosensors, pH, surface functionalization, aggregation.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>The Wigner-Vlasov formalism for time-dependent quantum oscillator</dc:title><dc:creator>Perepelkin Evgeny<irid>3008047</irid></dc:creator><dc:creator>Sadovnikov Boris<irid>548911</irid></dc:creator><dc:creator>Inozemtseva Natalia<irid>245078948</irid></dc:creator><dc:creator>Korepanova Anisia<irid>536328506</irid></dc:creator><prism:publicationName>Physica Scripta</prism:publicationName><prism:issn>0031-8949</prism:issn><journalRanking type="ImpactFactor" year="2022">2.9</journalRanking><prism:doi>10.1088/1402-4896/acf809</prism:doi> <dc:publisher>Royal Swedish Academy of Sciences</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>98</prism:volume><prism:startingPage>1</prism:startingPage><prism:endingPage>22</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/597570384/</prism:url><prism:ID>597570384/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-27 12:31:41</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Jet quenching in anisotropic flowing matter</dc:title><dc:creator>Kuzmin Matvey V.<irid>628510901</irid></dc:creator><dc:creator>López Xoán Mayo<irid>628511418</irid></dc:creator><dc:creator>Sadofyev Andrey V.<irid></irid></dc:creator><dc:creator>Reiten Jared<irid></irid></dc:creator><prism:publicationName>Physical Review D</prism:publicationName><prism:issn>1550-7998</prism:issn><journalRanking type="ImpactFactor" year="2022">5</journalRanking><prism:doi>10.1103/PhysRevD.109.014036</prism:doi> <dc:publisher>American Physical Society</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>109</prism:volume><prism:startingPage>1</prism:startingPage><prism:endingPage>36</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/628511419/</prism:url><prism:ID>628511419/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-09 14:39:06</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>We study the interplay between the flow and hydrodynamic gradients in jet quenching at first order in opacity. We find that the mixed flow-gradient contributions in jet quenching are enhanced by the medium length and survive in the eikonal limit, dominating over other medium evolution effects. The resulting modification to the jet quenching parameter and energy loss rate can be substantial, leading to ample phenomenological implications. We also compute the leading corrections to the jet broadening due to the flow velocity gradients and consider the leading gradient effects in the medium-induced branching for general kinematics, extending the recent considerations of jets in inhomogeneous media. These results can be straightforwardly coupled to matter simulations, providing new opportunities for jet tomography in heavy-ion collisions.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Observation of Collider Muon Neutrinos with the SND@LHC Experiment</dc:title><dc:creator>Albanese R.<irid></irid></dc:creator><dc:creator>Alexandrov A.<irid></irid></dc:creator><dc:creator>Alicante F.<irid>608735732</irid></dc:creator><dc:creator>Anokhina A.<irid>394331</irid></dc:creator><dc:creator>Asada T.<irid></irid></dc:creator><dc:creator>Battilana C.<irid>608735733</irid></dc:creator><dc:creator>Bay A.<irid></irid></dc:creator><dc:creator>Betancourt C.<irid></irid></dc:creator><dc:creator>Biswas R.<irid></irid></dc:creator><dc:creator>Blanco Castro A.<irid></irid></dc:creator><dc:creator>Bogomilov M.<irid></irid></dc:creator><dc:creator>Bonacorsi D.<irid></irid></dc:creator><dc:creator>Bonivento W.M.<irid></irid></dc:creator><dc:creator>Bordalo P.<irid></irid></dc:creator><dc:creator>Boyarsky A.<irid></irid></dc:creator><dc:creator>Buontempo S.<irid></irid></dc:creator><dc:creator>Campanelli M.<irid></irid></dc:creator><dc:creator>Camporesi T.<irid>608735734</irid></dc:creator><dc:creator>Canale V.<irid>608735735</irid></dc:creator><dc:creator>Castro A.<irid></irid></dc:creator><dc:creator>Centanni D.<irid></irid></dc:creator><dc:creator>Cerutti F.<irid></irid></dc:creator><dc:creator>Chernyavskiy M.<irid>394608</irid></dc:creator><dc:creator>Choi K.Y.<irid></irid></dc:creator><dc:creator>Cholak S.<irid></irid></dc:creator><dc:creator>Cindolo F.<irid></irid></dc:creator><dc:creator>Climescu M.<irid></irid></dc:creator><dc:creator>Conaboy A.P.<irid></irid></dc:creator><dc:creator>Dallavalle G.M.<irid></irid></dc:creator><dc:creator>Davino D.<irid></irid></dc:creator><dc:creator>de Bryas P.T.<irid>608735736</irid></dc:creator><dc:creator>De Lellis G.<irid>328273517</irid></dc:creator><dc:creator>De Magistris M.<irid>608735737</irid></dc:creator><dc:creator>De Roeck A.<irid></irid></dc:creator><dc:creator>De Rújula A.<irid>608735738</irid></dc:creator><dc:creator>De Serio M.<irid></irid></dc:creator><dc:creator>De Simone D.<irid>608735739</irid></dc:creator><dc:creator>Di Crescenzo A.<irid></irid></dc:creator><dc:creator>Donà R.<irid></irid></dc:creator><dc:creator>Durhan O.<irid></irid></dc:creator><dc:creator>Fabbri F.<irid></irid></dc:creator><dc:creator>Fedotovs F.<irid></irid></dc:creator><dc:creator>Ferrillo M.<irid>608735740</irid></dc:creator><dc:creator>Ferro-Luzzi M.<irid></irid></dc:creator><dc:creator>Fini R.A.<irid></irid></dc:creator><dc:creator>Fiorillo A.<irid>608735741</irid></dc:creator><dc:creator>Fresa R.<irid></irid></dc:creator><dc:creator>Funk W.<irid></irid></dc:creator><dc:creator>Garay Walls F.M.<irid></irid></dc:creator><dc:creator>Golovatiuk A.<irid></irid></dc:creator><dc:creator>Golutvin A.<irid></irid></dc:creator><dc:creator>Graverini E.<irid></irid></dc:creator><dc:creator>Guler A.M.<irid></irid></dc:creator><dc:creator>Guliaeva V.<irid>365474120</irid></dc:creator><dc:creator>Haefeli G.J.<irid></irid></dc:creator><dc:creator>Helo Herrera J.C.<irid></irid></dc:creator><dc:creator>van Herwijnen E.<irid>608735742</irid></dc:creator><dc:creator>Iengo P.<irid></irid></dc:creator><dc:creator>Ilieva S.<irid></irid></dc:creator><dc:creator>Infantino A.<irid>608735743</irid></dc:creator><dc:creator>Iuliano A.<irid></irid></dc:creator><dc:creator>Jacobsson R.<irid></irid></dc:creator><dc:creator>Kamiscioglu C.<irid></irid></dc:creator><dc:creator>Kauniskangas A.M.<irid>608735744</irid></dc:creator><dc:creator>Khalikov E.<irid>30933205</irid></dc:creator><dc:creator>Kim S.H.<irid></irid></dc:creator><dc:creator>Kim Y.G.<irid></irid></dc:creator><dc:creator>Klioutchnikov G.<irid>608735745</irid></dc:creator><dc:creator>Komatsu M.<irid></irid></dc:creator><dc:creator>Konovalova N.<irid></irid></dc:creator><dc:creator>Kovalenko S.<irid></irid></dc:creator><dc:creator>Kuleshov S.<irid></irid></dc:creator><dc:creator>Lacker H.M.<irid></irid></dc:creator><dc:creator>Lantwin O.<irid></irid></dc:creator><dc:creator>Lasagni Manghi F.<irid>608735746</irid></dc:creator><dc:creator>Lauria A.<irid></irid></dc:creator><dc:creator>Lee K.Y.<irid></irid></dc:creator><dc:creator>Lee K.S.<irid></irid></dc:creator><dc:creator>Lo Meo S.<irid></irid></dc:creator><dc:creator>Loschiavo V.P.<irid></irid></dc:creator><dc:creator>Marcellini S.<irid>608735747</irid></dc:creator><dc:creator>Margiotta A.<irid></irid></dc:creator><dc:creator>Mascellani A.<irid>608735748</irid></dc:creator><dc:creator>Miano A.<irid></irid></dc:creator><dc:creator>Mikulenko A.<irid></irid></dc:creator><dc:creator>Montesi M.C.<irid></irid></dc:creator><dc:creator>Navarria F.L.<irid>608735749</irid></dc:creator><dc:creator>Ogawa S.<irid></irid></dc:creator><dc:creator>Okateva N.<irid>4996430</irid></dc:creator><dc:creator>Ovchynnikov M.<irid></irid></dc:creator><dc:creator>Paggi G.<irid></irid></dc:creator><dc:creator>Park B.D.<irid></irid></dc:creator><dc:creator>Pastore A.<irid></irid></dc:creator><dc:creator>Perrotta A.<irid></irid></dc:creator><dc:creator>Podgrudkov D.<irid>350224240</irid></dc:creator><dc:creator>Polukhina N.<irid>30693906</irid></dc:creator><dc:creator>Prota A.<irid></irid></dc:creator><dc:creator>Quercia A.<irid>608735750</irid></dc:creator><dc:creator>Ramos S.<irid></irid></dc:creator><dc:creator>Reghunath A.<irid></irid></dc:creator><dc:creator>Roganova T.<irid>393396</irid></dc:creator><dc:creator>Ronchetti F.<irid></irid></dc:creator><dc:creator>Rovelli T.<irid></irid></dc:creator><dc:creator>Ruchayskiy O.<irid></irid></dc:creator><dc:creator>Ruf T.<irid></irid></dc:creator><dc:creator>Sabate Gilarte M.<irid></irid></dc:creator><dc:creator>Samoilov M.<irid>401745729</irid></dc:creator><dc:creator>Scalera V.<irid>608735751</irid></dc:creator><dc:creator>Schneider O.<irid></irid></dc:creator><dc:creator>Sekhniaidze G.<irid>608735752</irid></dc:creator><dc:creator>Serra N.<irid></irid></dc:creator><dc:creator>Shaposhnikov M.<irid></irid></dc:creator><dc:creator>Shevchenko V.<irid></irid></dc:creator><dc:creator>Shchedrina T.<irid>3818738</irid></dc:creator><dc:creator>Shchutska L.<irid></irid></dc:creator><dc:creator>Shibuya H.<irid></irid></dc:creator><dc:creator>Simone S.<irid></irid></dc:creator><dc:creator>Siroli G.P.<irid></irid></dc:creator><dc:creator>Sirri G.<irid></irid></dc:creator><dc:creator>Soares G.<irid></irid></dc:creator><dc:creator>Soto Sandoval O.J.<irid>608735753</irid></dc:creator><dc:creator>Spurio M.<irid></irid></dc:creator><dc:creator>Starkov N.<irid>30693907</irid></dc:creator><dc:creator>Timiryasov I.<irid></irid></dc:creator><dc:creator>Tioukov V.<irid>5641128</irid></dc:creator><dc:creator>Tramontano F.<irid></irid></dc:creator><dc:creator>Trippl C.<irid>608735754</irid></dc:creator><dc:creator>Ursov E.<irid>253994105</irid></dc:creator><dc:creator>Ustyuzhanin A.<irid></irid></dc:creator><dc:creator>Vankova-Kirilova G.<irid>608735755</irid></dc:creator><dc:creator>Verguilov V.<irid>608735756</irid></dc:creator><dc:creator>Viegas Guerreiro Leonardo N.<irid>608735757</irid></dc:creator><dc:creator>Vilela C.<irid>608735758</irid></dc:creator><dc:creator>Visone C.<irid></irid></dc:creator><dc:creator>Wanke R.<irid></irid></dc:creator><dc:creator>Yaman E.<irid></irid></dc:creator><dc:creator>Yazici C.<irid>608735759</irid></dc:creator><dc:creator>Yoon C.S.<irid></irid></dc:creator><dc:creator>Zaffaroni E.<irid>608735760</irid></dc:creator><dc:creator>Zamora Saa J.<irid></irid></dc:creator><prism:publicationName>Physical Review Letters</prism:publicationName><prism:issn>0031-9007</prism:issn><journalRanking type="ImpactFactor" year="2022">8.6</journalRanking><prism:doi>10.1103/PhysRevLett.131.031802</prism:doi> <dc:publisher>American Physical Society</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>131</prism:volume><prism:number>3</prism:number><prism:url>http://istina.msu.ru/publications/article/608735761/</prism:url><prism:ID>608735761/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>7</val_Scopus><created>2023-11-06 23:29:43</created> <attachments><url>https://istina.msu.ru/download/612448033/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>We report the direct observation of muon neutrino interactions with the SND@LHC detector at the Large Hadron Collider. A data set of proton-proton collisions at $\sqrt{s} = 13.6\,$TeV collected by SND@LHC in 2022 is used, corresponding to an integrated luminosity of 36.8$\,\rm{fb}^{-1}$. The search is based on information from the active electronic components of the SND@LHC detector, which covers the pseudo-rapidity region of $7.2 < \eta < 8.4$, inaccessible to the other experiments at the collider. Muon neutrino candidates are identified through their charged-current interaction topology, with a track propagating through the entire length of the muon detector. After selection cuts, 8 $\nu_\mu$ interaction candidate events remain with an estimated background of 0.076 events, yielding a significance of seven standard deviations for the observed $\nu_\mu$ signal.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Wigner function of the 4-th rank</dc:title><dc:creator>Perepelkin E.E.<irid>3008047</irid></dc:creator><dc:creator>Sadovnikov B.I.<irid>548911</irid></dc:creator><dc:creator>Inozemtseva N.G.<irid>245078948</irid></dc:creator><dc:creator>Korepanova A.A.<irid>536328506</irid></dc:creator><prism:publicationName>Physics Letters, Section A: General, Atomic and Solid State Physics</prism:publicationName><prism:issn>0375-9601</prism:issn><journalRanking type="ImpactFactor" year="2022">2.6</journalRanking><prism:doi>10.1016/j.physleta.2023.129085</prism:doi> <dc:publisher>Elsevier BV</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>-1</prism:volume><prism:startingPage>1</prism:startingPage><prism:endingPage>26</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/587400108/</prism:url><prism:ID>587400108/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-24 12:05:30</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Testing universal dark-matter caustic rings with galactic rotation curves</dc:title><dc:creator>Davydov Daniil<irid>503169840</irid></dc:creator><dc:creator>Troitsky Sergey<irid>517583523</irid></dc:creator><prism:publicationName>Physics Letters B</prism:publicationName><prism:issn>0370-2693</prism:issn><journalRanking type="ImpactFactor" year="2022">4.4</journalRanking><prism:doi>https://doi.org/10.1016/j.physletb.2023.137798</prism:doi> <dc:publisher>Elsevier BV</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>839</prism:volume><prism:startingPage>137798</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/539751479/</prism:url><prism:ID>539751479/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-03-06 18:50:07</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Infall of cold dark matter on a galaxy may result in caustic rings where the particle density is enhanced. They may be searched for as features in the galactic rotation curves. Previous studies suggested the evidence for these caustic rings with universal, that is common for different galaxies, parameters. Here we test this hypothesis with a large independent set of rotation curves by means of an improved statistical method. No evidence for universal caustic rings is found in the new analysis.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Cross sections of partial photoneutron reactions on 59Co in experiments with bremsstrahlung</dc:title><dc:creator>Varlamov V.V.<irid>394718</irid></dc:creator><dc:creator>Davydov A.I.<irid>17824662</irid></dc:creator><dc:creator>Mostakov I.A.<irid>412382196</irid></dc:creator><dc:creator>Orlin V.N.<irid>519640</irid></dc:creator><prism:publicationName>Physics of Atomic Nuclei</prism:publicationName><prism:issn>1063-7788</prism:issn><journalRanking type="ImpactFactor" year="2022">.4</journalRanking><prism:doi>10.1134/S1063778823050022.</prism:doi> <dc:publisher>Pleiades Publishing, Ltd</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>86</prism:volume><prism:number>5</prism:number><prism:startingPage>600</prism:startingPage><prism:endingPage>612</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/593162510/</prism:url><prism:ID>593162510/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-12 11:42:26</created> <attachments><url>https://istina.msu.ru/download/602354269/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The reliability of data on (γ, 1n) and (γ, 2n) reactions on 59Co from several experiments carried out using beams of bremsstrahlung was investigated using the experimental-theoretical method of evaluation of photoneutron partial reaction cross sections based on objective physical criteria. It was found out that partial reaction cross sections obtained using the corrections to the neutron yield cross section σ(γ, xn) = σ(γ, 1n) + 2σ(γ, 2n) calculated via statistical theory do not satisfy physical criteria of reliability. In experiments under discussion the (γ, 1n) reaction cross sections were significantly unreliably underestimated, but the (γ, 2n) reaction cross sections were, vice versa, overestimated. Evidently, this is because of some shortcomings of the method used for obtaining the information on partial reaction cross sections with the aid of corrections calculated via statistical theory.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Design of the Simulation Scheme for SPHERE-3 Telescope for the 10^15 − 10^18 eV Primary Cosmic Ray Studies Using Direct and Reflected Cherenkov Light from the Extensive Air Showers</dc:title><dc:creator>Bonvech E.A.<irid>843212</irid></dc:creator><dc:creator>Azra C.J.<irid>488741851</irid></dc:creator><dc:creator>Chernov D.V.<irid>564728</irid></dc:creator><dc:creator>Galkin V.I.<irid>394024</irid></dc:creator><dc:creator>Entina E.L.<irid>73476748</irid></dc:creator><dc:creator>Ivanov V.A.<irid>342242027</irid></dc:creator><dc:creator>Latypova V.S.<irid>322000705</irid></dc:creator><dc:creator>Podgrudkov D.A.<irid>350224240</irid></dc:creator><dc:creator>Roganova T.M.<irid>393396</irid></dc:creator><dc:creator>Ziva M.D.<irid>403046600</irid></dc:creator><prism:publicationName>Physics of Atomic Nuclei</prism:publicationName><prism:issn>1063-7788</prism:issn><journalRanking type="ImpactFactor" year="2022">.4</journalRanking><prism:doi>10.1134/S1063778824010149</prism:doi> <dc:publisher>Pleiades Publishing, Ltd</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>86</prism:volume><prism:number>6</prism:number><prism:startingPage>1048</prism:startingPage><prism:endingPage>1055</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/623328756/</prism:url><prism:ID>623328756/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-22 23:49:35</created> <attachments><url>https://istina.msu.ru/download/623328779/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Paper contains the first results on the development of a SPHERE-3 telescope for the primary cosmic ray studies in 1–1000 PeV energy range using reflected and direct Cherenkov light generated by extensive air showers. It also sheds some light on the development of our new approach to the design of the new telescope.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Shift of the Proton Drip Line by Λ-Hyperons</dc:title><dc:creator>Kornilova A.S.<irid>477543700</irid></dc:creator><dc:creator>Sidorov S.V.<irid>30426547</irid></dc:creator><dc:creator>Lanskoy D.E.<irid>407617</irid></dc:creator><dc:creator>Tretyakova T.Yu<irid>1172656</irid></dc:creator><prism:publicationName>Physics of Particles and Nuclei Letters</prism:publicationName><prism:issn>1547-4771</prism:issn><prism:doi>10.1134/S154747712305045X</prism:doi> <dc:publisher>Pleiades Publishing, Ltd</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>20</prism:volume><prism:startingPage>1142</prism:startingPage><prism:endingPage>1145</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/608396933/</prism:url><prism:ID>608396933/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-05 14:13:18</created> <attachments><url>https://istina.msu.ru/download/611463899/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Addition of a Λ-hyperon to non-strange nuclei can lead to an increase in the binding energy and formation of a bound hypernucleus with an unbound nucleon core, effectively leading to the shift of the proton drip line on the hypernuclear chart. The structure of light proton-rich Λ-hypernuclei with 5 ≤ Z ≤ 12 is treated within the Hartree–Fock approach with effective potentials in the Skyrme form. We show that nuclei 8C and 16F are most likely can be bound by a hyperon.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Skyrme-Like Λ Hyperonic Interactions and Neutron Stars Properties</dc:title><dc:creator>Lanskoy D.E.<irid>407617</irid></dc:creator><dc:creator>Mikheev S.A.<irid>338980174</irid></dc:creator><dc:creator>Nasakin A.I.<irid>466991320</irid></dc:creator><dc:creator>Tretyakova T.Yu<irid>1172656</irid></dc:creator><prism:publicationName>Physics of Particles and Nuclei Letters</prism:publicationName><prism:issn>1547-4771</prism:issn><prism:doi>10.1134/S1547477123060225</prism:doi> <dc:publisher>Pleiades Publishing, Ltd</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>20</prism:volume><prism:number>6</prism:number><prism:startingPage>1488</prism:startingPage><prism:endingPage>1491</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/611463317/</prism:url><prism:ID>611463317/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-14 10:29:40</created> <attachments><url>https://istina.msu.ru/download/611463389/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>At high densities that are achieved in neutron stars, there may be additional sensitivity to certainproperties of the baryonic interaction. In the present work, we consider neutron stars consisting of nucleons, leptons, and Λ-hyperons with Skyrme baryonic force. We calculate different characteristics of neutron stars such as mass, radius and tidal deformability and investigate their dependence on the properties of the interactions.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Low energy electron injection for direct laser acceleration</dc:title><dc:creator>Starodubtseva E.<irid>367797312</irid></dc:creator><dc:creator>Tsymbalov I.<irid>7072221</irid></dc:creator><dc:creator>Gorlova D.<irid>27638815</irid></dc:creator><dc:creator>Ivanov K.<irid>579944</irid></dc:creator><dc:creator>Savel'ev A.<irid>386630</irid></dc:creator><prism:publicationName>Physics of Plasmas</prism:publicationName><prism:issn>1070-664X</prism:issn><journalRanking type="ImpactFactor" year="2022">2.2</journalRanking><prism:doi>10.1063/5.0155196</prism:doi> <dc:publisher>AIP Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>30</prism:volume><prism:number>8</prism:number><prism:startingPage>083105</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/587405733/</prism:url><prism:ID>587405733/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-24 16:35:39</created> <attachments><url>https://istina.msu.ru/download/587405799/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The feasibility of ionization injection for Direct Laser Acceleration (DLA) of electrons up to hundreds of MeV has been studied analytically. Criteria for effective injection determining a range of background and in-channel plasma parameters, laser intensity, etc., were found using phase portraits of the system deduced from the simplified analytical model. The found optimal trajectory in the phase space corresponds to the electron with low (few eV) initial energy experiencing ∼109 times energy gain. For this to occur, electron density should be a few percent of the critical density, while the in-channel electron density should be ∼3 times lower. The analytically obtained dependence of the energy gain on the initial electron longitudinal and transverse momenta corresponds well to the results of exact numerical simulations of an electron motion in the plasma channel. To test the theory, a series of PIC simulations were carried out. PIC simulation confirms the model if the plasma channel has appropriate parameters. The developed approach can form the basis for further studies of electron injection in DLA varying plasma and laser parameters as well as initial electron energies.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>ectrohydrodynamic Phenomena in Discharges over Dispersed Electrodes</dc:title><dc:creator>Bychkov V.L.<irid>6851804</irid></dc:creator><dc:creator>Sorokovykh D.E.<irid>538421296</irid></dc:creator><dc:creator>Goryachkin P.A.<irid>321982753</irid></dc:creator><dc:creator>Bychkov D.V.<irid>8594431</irid></dc:creator><dc:creator>Chernikov V.A.<irid>8452320</irid></dc:creator><prism:publicationName>Plasma Physics Reports</prism:publicationName><prism:issn>1063-780X</prism:issn><journalRanking type="ImpactFactor" year="2022">1.1</journalRanking><prism:doi>10.1134/S1063780X23600408</prism:doi> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>49</prism:volume><prism:number>6</prism:number><prism:startingPage>808</prism:startingPage><prism:endingPage>811</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/569679435/</prism:url><prism:ID>569679435/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-06-20 20:04:21</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Data on experiments with discharges over dielectrics in the form of powder of Al2O3, SiO2, soil, etc. are presented. Discharges developed under the upper electrode in the form of a needle or a set of needles. A cuvette filled with a substance was used as the lower electrode, to which grounding was applied. The appearance of jets and their destruction into droplets reflect the devel-opment of hydrodynamic phenomena over charged liquids. In the case of a dispersedelectrode (electrodes), a funnel (funnels) or complex pointed structures, more complex shapes, etc. appear on the surface under the action of hydrodynamic flows. The surface temperature of the liq-uid is measured using a thermal imager. A qualitative interpretation of the results is given.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Nonlinear Dynamics of Slipping Flows</dc:title><dc:creator>Kuznetsov E.A.<irid>10624671</irid></dc:creator><dc:creator>Mikhailov E.A.<irid>6928660</irid></dc:creator><dc:creator>Serdyukov M.G.<irid>334982048</irid></dc:creator><prism:publicationName>Radiophysics and Quantum Electronics (English Translation of Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika)</prism:publicationName><prism:issn>0033-8443</prism:issn><journalRanking type="ImpactFactor" year="2022">.8</journalRanking><prism:doi>10.1007/s11141-023-10281-9</prism:doi> <dc:publisher>Kluwer Academic/Plenum Publishers</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>66</prism:volume><prism:startingPage>129</prism:startingPage><prism:endingPage>142</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/621292472/</prism:url><prism:ID>621292472/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-20 23:11:00</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Photoinduced Dynamics of Spin Centers in Carbon-Modified Titanium Dioxide Nanotubes</dc:title><dc:creator>Kytina E.V.<irid>334085084</irid></dc:creator><dc:creator>Savchuk T.P.<irid>10310441</irid></dc:creator><dc:creator>Gavrilin I.M.<irid></irid></dc:creator><dc:creator>Konstantinova E.A.<irid>415137</irid></dc:creator><prism:publicationName>Russian Journal of Inorganic Chemistry</prism:publicationName><prism:issn>0036-0236</prism:issn><journalRanking type="ImpactFactor" year="2022">2.1</journalRanking><prism:doi>10.1134/S003602362260229X</prism:doi> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>68</prism:volume><prism:number>3</prism:number><prism:startingPage>357</prism:startingPage><prism:endingPage>362</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/556057310/</prism:url><prism:ID>556057310/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-09 15:45:00</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Arrays of titanium dioxide (TiO2) nanotubes with different chemical compositions have been synthesized;their structural properties have been studied, and the characteristics of spin centers (defects) havebeen determined. All samples have appeared to contain carbon. It has been established that the main type ofspin centers in TiO2 nanotubes are dangling carbon bonds, and their concentration correlates with the carboncontent in the obtained structures. Under illumination, a reversible increase in the concentration of defectsoccurs, which is caused by their photoinduced recharging in the process of impurity absorption. This processis accompanied by an increase in the concentration of photoexcited electrons in the conduction band. Theoriginality and novelty of the work are determined by the development of a method for controlling the densityof defects and, accordingly, the concentration of photoinduced electrons by thermal treatment of samplesunder various conditions. The results open up new possibilities for the development of photocatalysts basedon titanium dioxide nanotubes with a controlled electron concentration in the conduction band that functionin the visible range of the spectrum.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Peculiarities of interaction of low-energy noble gas atoms with methyl groups on the low-κ surface</dc:title><dc:creator>Solovykh A.A.<irid>417457219</irid></dc:creator><dc:creator>Sycheva A.A.<irid>9409381</irid></dc:creator><dc:creator>Voronina E.N.<irid>277965</irid></dc:creator><prism:publicationName>Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques</prism:publicationName><prism:issn>1027-4510</prism:issn><journalRanking type="ImpactFactor" year="2012">.359</journalRanking><prism:doi>10.1134/s1027451023010391</prism:doi> <dc:publisher>Pleiades Publishing, Ltd</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>17</prism:volume><prism:number>1</prism:number><prism:startingPage>228</prism:startingPage><prism:endingPage>234</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/626733845/</prism:url><prism:ID>626733845/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-04 01:07:46</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Influence of Synthesis Conditions on the Structural, Optical, and Electrophysical Properties of TiO2-Cu-O Nanocomposites</dc:title><dc:creator>Martyshov M.N.<irid>587285</irid></dc:creator><dc:creator>Pavlikov A.V.<irid>1323642</irid></dc:creator><dc:creator>Kytina E.V.<irid>334085084</irid></dc:creator><dc:creator>Pinchuk O.V.<irid>8868072</irid></dc:creator><dc:creator>Savchuk T.P.<irid>10310441</irid></dc:creator><dc:creator>Konstantinova E.A.<irid>415137</irid></dc:creator><dc:creator>Zaitsev V.B.<irid>1346222</irid></dc:creator><dc:creator>Kashkarov P.K.<irid>384659</irid></dc:creator><prism:publicationName>Technical Physics</prism:publicationName><prism:issn>1063-7842</prism:issn><journalRanking type="ImpactFactor" year="2022">.7</journalRanking><prism:doi>10.21883/tp.2023.02.55478.221-22n</prism:doi> <dc:publisher>Maik Nauka/Interperiodica Publishing</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>68</prism:volume><prism:number>2</prism:number><prism:startingPage>234</prism:startingPage><prism:endingPage>240</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/553203322/</prism:url><prism:ID>553203322/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-04-30 00:47:06</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Nanocomposites based on anodic titanium oxide nanotubes with copper oxide nanoparticles were formed andtheir structural, optical, and electrophysical properties were studied. Defects in the structure of the samples wereidentified by electron paramagnetic resonance and it was shown that, as a result of copper oxide deposition, CuOnanoparticles were formed on the surface of nanotubes. It was found that the conductivity of the structure decreasesby several orders of magnitude with an increase in the number of deposition cycles. It was shown that this effectcould be associated with the formation of TiO2/CuO heterojunctions on the nanotube surface. It was shown forthe first time that an increase in the content of copper oxide in TiO2/Cux O nanocomposites was accompanied by adecrease in conductivity and an increase in the number of defects.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>N2 plasma interaction with molybdenum disulfide monolayers</dc:title><dc:creator>Khlebnikov S.A.<irid>593181112</irid></dc:creator><dc:creator>Solovykh A.A.<irid>417457219</irid></dc:creator><dc:creator>Mankelevich Yu A.<irid>438122</irid></dc:creator><dc:creator>Voronina E.N.<irid>277965</irid></dc:creator><prism:publicationName>Technical Physics Letters</prism:publicationName><prism:issn>1063-7850</prism:issn><journalRanking type="ImpactFactor" year="2022">.6</journalRanking><prism:doi>10.61011/TPL.2023.09.56709.19640</prism:doi> <dc:publisher>Pleiades Publishing, Ltd</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>9</prism:number><prism:startingPage>49</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/623870962/</prism:url><prism:ID>623870962/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-24 11:41:38</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Особенности использования сканирующей капиллярной микроскопии в биомедицинских исследованиях</dc:title><dc:creator>Советников Т.О.<irid>327452832</irid></dc:creator><dc:creator>Ахметова А.И.<irid>17356968</irid></dc:creator><dc:creator>Максимова Н.Е.<irid>535533983</irid></dc:creator><dc:creator>Терентьев А.Д.<irid>543711841</irid></dc:creator><dc:creator>Евтушенко Г.С.<irid></irid></dc:creator><dc:creator>Рыбаков Ю.Л.<irid>20062022</irid></dc:creator><dc:creator>Гукасов В.М.<irid>10716924</irid></dc:creator><dc:creator>Яминский И.В.<irid>839749</irid></dc:creator><prism:publicationName>Медицинская техника</prism:publicationName> <dc:publisher>Izdatel'stvo Meditsina Publishers</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>4</prism:number><prism:url>http://istina.msu.ru/publications/article/593169422/</prism:url><prism:ID>593169422/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-12 15:33:59</created> <attachments><url>https://istina.msu.ru/download/593170583/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Алгоритмизация автоматического управления парковкой беспилотного автомобиля</dc:title><dc:creator>Тюленев И.Д.<irid>592844195</irid></dc:creator><dc:creator>Филимонов Н.Б.<irid></irid></dc:creator><prism:publicationName>Мехатроника, автоматизация, управление</prism:publicationName> <dc:publisher>Новые технологии</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>24</prism:volume><prism:number>12</prism:number><prism:startingPage>634</prism:startingPage><prism:endingPage>642</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/611473647/</prism:url><prism:ID>611473647/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-14 14:18:24</created> <attachments><url>https://istina.msu.ru/download/611487550/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Рассматривается задача управления автоматической парковкой беспилотного автомобиля (БПА) как один из аспектов разработки БПА, полная автономность которого достигается автоматизацией управления всех его режимов движения и маневров, включая парковку. Даны постановка и формализация задачи управления парковкой автомобиля с учетом механических и пространственных ограничений, обеспечивающих безопасность парковочного маневра. Рассмотрены как классический, так и современный методы управления автоматической парковкой автомобиля.Классический метод управления парковкой БПА основан на использовании широко распространенных моделейдвижения Дубинса и Ридса—Шеппа, обеспечивающих оптимальную по быстродействию парковку автомобиля. Предлагаются алгоритмы управления парковкой автомобиля, реализующие классический метод управления. При этом для построения пути между двумя точками использован алгоритм быстрорастущего случайного дерева RRT, важным достоинством которого является его независимость от геометрического представления и размерности моделируемого окружения автомобиля.Современный метод управления парковкой БПА основан на использовании интеллектуальных технологий и, в частности, машинного обучения. Предлагается алгоритм управления парковкой автомобиля, реализующий современный метод управления на основе машинного обучения с подкреплением. При этом использован наиболее эффективный алгоритм обучения — алгоритм Q-обучения.Синтезированные алгоритмы управления парковкой автомобиля реализованы на языке Python с использованием популярных математических библиотек Matplotlib и NumPy. Проведена компьютерная верификация синтезированных алгоритмов, которая подтвердила эффективность предложенных алгоритмических решений автоматического управления парковкой БПА.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Явления в коронном разряде над дисперсными электродами</dc:title><dc:creator>Бычков В.Л.<irid>6851804</irid></dc:creator><dc:creator>Сороковых Д.E.<irid>538421296</irid></dc:creator><dc:creator>Горячкин П.А.<irid>321982753</irid></dc:creator><dc:creator>Бычков Д.В.<irid>5095717</irid></dc:creator><dc:creator>Черников В.А.<irid>8452320</irid></dc:creator><prism:publicationName>Прикладная физика</prism:publicationName><prism:doi>10.51368/1996-0948-2023-1-23-27</prism:doi> <dc:publisher>[б.и.]</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>11</prism:volume><prism:number>1</prism:number><prism:startingPage>23</prism:startingPage><prism:endingPage>27</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/537142231/</prism:url><prism:ID>537142231/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-02-22 21:45:11</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>DOI : 10.51368/1996-0948-2023-1-23-27Проведены электрогидродинамические эксперименты над дисперсными системами в разряде.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Воздействие коронного разряда на почву</dc:title><dc:creator>Бычков В.Л.<irid>6851804</irid></dc:creator><dc:creator>Шваров А.П.<irid>2216952</irid></dc:creator><dc:creator>Горячкин П.А.<irid></irid></dc:creator><dc:creator>Сороковых Д.Е.<irid>538421296</irid></dc:creator><dc:creator>Бычков Д.В.<irid>263737850</irid></dc:creator><dc:creator>Ваулин Д.Н.<irid>116009615</irid></dc:creator><dc:creator>Черников В.А.<irid>8452320</irid></dc:creator><prism:publicationName>Прикладная физика</prism:publicationName><prism:doi>10.51368/1996-00948-2023-6-11-18</prism:doi> <dc:publisher>[б.и.]</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>6</prism:number><prism:startingPage>11</prism:startingPage><prism:endingPage>18</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/631623968/</prism:url><prism:ID>631623968/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-20 19:34:41</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Представлены результаты экспериментальных исследований влияния плазмы коронного разряда на чернозём, краснозём и торф. Установлено, что продукты плазмохимии атмосферного воздуха в коронных разрядах взаимодействуют с почвенном поглощающем комплексом и изменяют его физико-химическое состояние. Выявлено влияние коронного разряда в изменении их электропроводности. Ионизация и диссоциация молекул воздуха при воздействии коронного разряда приводит к увеличению электропроводности почв. Разнонаправленность результатов обработки субстратов минеральной (чернозем, краснозем) и органогенной (торф) природы, выраженной в изменении кислотности, свидетельствует о различии механизмов восприятия электрических разрядов почвенной матрицей.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Structure and Mechanical Response of Polybutylcarbosilane Dendrimers Confined in a Flat Slit: Effect of Molecular Architecture and Generation Number</dc:title><dc:creator>Kurbatov Andrey O.<irid>33116185</irid></dc:creator><dc:creator>Balabaev Nikolay K.<irid>2116546</irid></dc:creator><dc:creator>Litvin Kirill A.<irid>631326578</irid></dc:creator><dc:creator>Kramarenko Elena Yu<irid>460339</irid></dc:creator><prism:publicationName>Polymers</prism:publicationName><journalRanking type="ImpactFactor" year="2022">5</journalRanking><prism:doi>10.3390/polym15204040</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>15</prism:volume><prism:number>20</prism:number><prism:startingPage>4040</prism:startingPage><prism:endingPage>4040</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/604491064/</prism:url><prism:ID>604491064/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-10-23 14:20:27</created> <attachments><url>https://istina.msu.ru/download/621213337/</url><url>https://istina.msu.ru/download/613045925/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Features of charge carrier transport in nanostructured TiO2-C-Cu composite</dc:title><dc:creator>Konstantinova Elizaveta A.<irid>415137</irid></dc:creator><dc:creator>Martyshov Mikhail N.<irid>587285</irid></dc:creator><dc:creator>Kytina Ekaterina V.<irid>334085084</irid></dc:creator><dc:creator>Savchuk Timofey P.<irid>10310441</irid></dc:creator><dc:creator>Zaitsev Vladimir B.<irid>1346222</irid></dc:creator><dc:creator>Ilin Alexander S.<irid>5644065</irid></dc:creator><dc:creator>Lobacheva Viktoriia V.<irid></irid></dc:creator><dc:creator>Forsh Pavel A.<irid>584907</irid></dc:creator><prism:publicationName>Materials</prism:publicationName><journalRanking type="ImpactFactor" year="2022">3.4</journalRanking><prism:doi>10.3390/ma12661810</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>16</prism:volume><prism:url>http://istina.msu.ru/publications/article/613022940/</prism:url><prism:ID>613022940/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-20 11:36:49</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Nanostructured titania (TiO2), due to its huge specific surface area, has a wide range of applications: from ordinary household dyes to sensors, solar cells and photocatalysts. Therefore, for the effective operation of TiO2-based devices, it is important to understand the patterns of electric charge transport. We have prepared the TiO2-C-Cu nanocomposites using electrochemical method. The band gap Eg of the all TiO2-C-Cu nanocomposites was approximately the same - 3.2 eV. There were found copper ions both substituting titanium ions, and copper ions in the composition of the CuO phase. The modification of TiO2-C nanotubes with Cu leads to a significant increase in conductivity. For the first time, the features of transport in theTiO2-C-Cu nanocomposites were revealed. The conductivity at DC current and at low frequencies of AC current is due to the movement of electrons along the conduction band, while at high frequencies, the hopping mechanism of conduction take place.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Experimental Study of the Motion of a Shock Wave in the Plasma of a Pulsed Volume Discharge in Air</dc:title><dc:creator>Militsina A.A.<irid>416135560</irid></dc:creator><dc:creator>Mursenkova I.V.<irid>534553</irid></dc:creator><prism:publicationName>Moscow University Physics Bulletin</prism:publicationName><journalRanking type="ImpactFactor" year="2022">.3</journalRanking><prism:doi>10.3103/S0027134923020066</prism:doi> <dc:publisher>Allerton Press</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>78</prism:volume><prism:number>2</prism:number><prism:url>http://istina.msu.ru/publications/article/582617029/</prism:url><prism:ID>582617029/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-01 20:47:23</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The motion of quasi-plane shock waves with Mach numbers M = 2.20−3.50 in the plasma of a nanosecond combined volume discharge in air at an initial pressure of 10–100 Torr has been experimentally studied on the basis of high-speed shadowgraphy of the flow field. The dynamics of shock wave configurations after the discharge at various stages of an unsteady supersonic flow, which is formed after the diffraction of a plane shock wave by a rectangular obstacle, is studied. An increase in the velocity of the shock wave front over a time interval of up to 15 μs in a plasma region 9–40 mm long and its dependence on the plasma parameters is found. An analysis of relaxation processes in plasma showed that the acceleration of the shock wave front can be caused by air heating due to the quenching of electronically excited nitrogen molecules, as result the internal energy is converted into thermal energy at times up to 30 μs.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Multiphoton quantum teleportation</dc:title><dc:creator>Belinsky A.V.<irid>1581892</irid></dc:creator><dc:creator>Grigorieva A.P.<irid>602401420</irid></dc:creator><dc:creator>Dzhadan I.I.<irid>619224992</irid></dc:creator><prism:publicationName>Moscow University Physics Bulletin</prism:publicationName><journalRanking type="ImpactFactor" year="2022">.3</journalRanking><prism:doi>10.3103/S002713492305003X</prism:doi> <dc:publisher>Allerton Press</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>78</prism:volume><prism:number>5</prism:number><prism:startingPage>603</prism:startingPage><prism:endingPage>608</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/592868996/</prism:url><prism:ID>592868996/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-11 20:18:16</created> <attachments><url>https://istina.msu.ru/download/592869238/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The possibility of multiphoton teleportation with obtaining clones of entangled particles is proposed. A vulnerability has been discovered in the previously considered physically invulnerable quantum teleportation channel. The issue of causality in the implementation of quantum teleportation are investigated.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Method for Separating Extensive Air Showers by Primary Mass Using Machine Learning for a Sphere-Type Cherenkov Telescope</dc:title><dc:creator>Latypova V.S.<irid>322000705</irid></dc:creator><dc:creator>Nemchenko V.A.<irid>467266762</irid></dc:creator><dc:creator>Azra C.G.<irid>488741851</irid></dc:creator><dc:creator>Bonvech E.A.<irid>843212</irid></dc:creator><dc:creator>Chernov D.V.<irid>564728</irid></dc:creator><dc:creator>Galkin V.I.<irid>394024</irid></dc:creator><dc:creator>Ivanov V.A.<irid>342242027</irid></dc:creator><dc:creator>Podgrudkov D.A.<irid>350224240</irid></dc:creator><dc:creator>Roganova T.M.<irid>393396</irid></dc:creator><prism:publicationName>Moscow University Physics Bulletin</prism:publicationName><journalRanking type="ImpactFactor" year="2022">.3</journalRanking><prism:doi>10.3103/s0027134923070196</prism:doi> <dc:publisher>Allerton Press</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>78</prism:volume><prism:number>S1</prism:number><prism:startingPage>S25</prism:startingPage><prism:endingPage>S31</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/625893194/</prism:url><prism:ID>625893194/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-31 19:26:46</created> <attachments><url>https://istina.msu.ru/download/625893210/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The study of cosmic rays mass composition is an important problem in high-energy physics. The main goal of the SPHERE-2 experiment was to study the energy spectrum of the primary cosmic rays in the 10–300 PeV energy range. Also the experimental data allow approaching their mass composition. The separation of events into nuclei groups makes it possible to estimate the average masses over the sample. Using machine learning methods, we developed a separation method for the primary nuclei groups that formed extensive air showers based on the simulated events for the SPHERE-2 telescope. Various models of the high energy nucleus-nucleus interaction were used, but their predictions differ significantly. In the SPHERE-2 experiment data analysis, this problem was solved, first, by the use of the data on Cherenkov light, which has weak dependence on the model of hadronic interaction; second, the neural network was trained simultaneously on two interaction models (QGSJET-01 and QGSJETII-04), which differ greatly from each other. Therefore, the independence of experimental data processing from the choice of the nuclear interaction model was ensured. The regression task is solved by machine learning methods. The separation of events into three groups of nuclei—protons (p), nitrogen (N), and iron (Fe)—by using a neural network is more precise than that by using traditional methods.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Calculation of Phase Equilibria of Pure Light Hydrocarbons Using the PC-SAFT Equation of State and the Direct Energy Minimisation</dc:title><dc:creator>Isaeva A.V.<irid>2937547</irid></dc:creator><dc:creator>Bevzo M.O.<irid>297641474</irid></dc:creator><prism:publicationName>Moscow University Physics Bulletin</prism:publicationName><journalRanking type="ImpactFactor" year="2022">.3</journalRanking><prism:doi>10.3103/S0027134923060061</prism:doi> <dc:publisher>Allerton Press</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>78</prism:volume><prism:number>6</prism:number><prism:startingPage>876</prism:startingPage><prism:endingPage>886</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/630497401/</prism:url><prism:ID>630497401/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-16 17:12:41</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Decomposition of Spectral Band into Gaussian Contours Using an Improved Modification of the Gender Genetic Algorithm</dc:title><dc:creator>Kupriyanov G.A.<irid>505191968</irid></dc:creator><dc:creator>Isaev I.V.<irid>585907</irid></dc:creator><dc:creator>Plastinin I.V.<irid>7130950</irid></dc:creator><dc:creator>Dolenko T.A.<irid>420914</irid></dc:creator><dc:creator>Dolenko S.A.<irid>551348</irid></dc:creator><prism:publicationName>Moscow University Physics Bulletin</prism:publicationName><journalRanking type="ImpactFactor" year="2022">.3</journalRanking><prism:doi>10.3103/S0027134923070044</prism:doi> <dc:publisher>Allerton Press</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>78</prism:volume><prism:number>Suppl.1</prism:number><prism:startingPage>S236</prism:startingPage><prism:endingPage>S242</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/621730096/</prism:url><prism:ID>621730096/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-07 04:40:36</created> <attachments><url>https://istina.msu.ru/download/622151356/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>One of the methods for analysis of complex spectral bands (especially for spectra of liquid objects) is their decomposition into a limited number of spectral curves with physically reasonable shapes (Gaussian, Lorentzian, Voigt etc.). Consequent analysis of the dependencies of the parameters of these contours on some external conditions in which the spectra are obtained may reveal some regularities bearing information about the physical processes taking place in the object. The problem with the required decomposition is that such decomposition in presence of noise in spectra is an incorrect inverse problem. Therefore, this problem is often solved by advanced optimization methods less subject to be stuck in local minima, such as genetic algorithms (GA). In the conventional version of GA, all individuals are similar regarding the probabilities and implementation of the main genetic operators (crossover and mutation) and the procedure of selection. In their preceding studies, the authors tested gender GA (GGA), where the individuals of the two genders differ by the probability of mutation (higher for males) and by the procedures of selection for crossover (with the number of crossovers limited for females). In this study, we introduce additional differences between the genders in the procedures of selection and mutation. The improved modification of GGA is tested by comparison of the efficiency conventional GA, GGA and three versions of GGA with and without subsequent gradient descent in solving the problems of decomposition of the Raman valence band of liquid water into Gaussian contours.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Model of Surface Nanorelief Formation under Irradiation with Gas Cluster Ions</dc:title><dc:creator>Bessmertniy D.R.<irid>563929877</irid></dc:creator><dc:creator>Ieshkin A.E.<irid>2528058</irid></dc:creator><prism:publicationName>Moscow University Physics Bulletin</prism:publicationName><journalRanking type="ImpactFactor" year="2022">.3</journalRanking><prism:doi>10.55959/MSU0579-9392.79.2410302</prism:doi> <dc:publisher>Allerton Press</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>79</prism:volume><prism:number>1</prism:number><prism:startingPage>1</prism:startingPage><prism:endingPage>4</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/624978653/</prism:url><prism:ID>624978653/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-28 14:28:40</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Selected Active Galactic Nuclei from SRG/eROSITA Survey: Optical and IR Observations in 2021 and 2022 with the 2.5-m Telescope at the Caucasian Mountain Observatory of SAI MSU</dc:title><dc:creator>Belinski A.A.<irid>395690</irid></dc:creator><dc:creator>Dodin A.V.<irid>852843</irid></dc:creator><dc:creator>Zheltoukhov S.G.<irid>140314266</irid></dc:creator><dc:creator>Postnov K.A.<irid>383511</irid></dc:creator><dc:creator>Potanin S.A.<irid>1244408</irid></dc:creator><dc:creator>Tatarnikov A.M.<irid>383508</irid></dc:creator><dc:creator>Tarasenkov A.N.<irid>536967523</irid></dc:creator><dc:creator>Shatskii N.I.<irid>1727826</irid></dc:creator><dc:creator>Medvedev P.S.<irid></irid></dc:creator><dc:creator>Khorunzhev G.A.<irid></irid></dc:creator><dc:creator>Meshcheryakov A.V.<irid>8415333</irid></dc:creator><dc:creator>Sazonov S.Yu<irid></irid></dc:creator><dc:creator>Gil’fanov M.R.<irid></irid></dc:creator><prism:publicationName>Astrophysical Bulletin</prism:publicationName><journalRanking type="ImpactFactor" year="2022">1.2</journalRanking><prism:doi>10.1134/s1990341323700074</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>78</prism:volume><prism:number>3</prism:number><prism:startingPage>283</prism:startingPage><prism:endingPage>292</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/611786860/</prism:url><prism:ID>611786860/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>1</val_Scopus><created>2023-11-15 13:58:13</created> <attachments><url>https://istina.msu.ru/download/612088885/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>We report the results of optical spectroscopy of eight highly variable X-ray sources—AGN candidates from all-sky survey of the eROSITA telescope of the Spectrum-Roentgen-Gamma Space Observatory—performed with the TDS spectrograph (3600–7500 Å) attached to the 2.5-m telescope of the Caucasian Mountain Observatory of Sternberg Astronomical Institute of M.V. Lomonosov Moscow State University. We determined the redshifts of the sources from the emission and absorption lines in their spectra. At least five objects can be classified as Seyfert galaxies. We performed pilot infrared photometry of three distant quasars with using the ASTRONIRCAM camera and show that on the ‘‘’’ diagram the distant quasars studied can be confidently distinguished from Galactic red and brown dwarfs. This result proves the possibility of preliminary classification of distant X-ray quasar candidates by their IR colors for further detailed spectroscopic study on large telescopes.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Low coercivity magnetoplasmonic crystal based on a thin permalloy film for magnetic field sensing applications</dc:title><dc:creator>Murzin Dmitry V.<irid>175535561</irid></dc:creator><dc:creator>Frolov Aleksandr Yu<irid>10700901</irid></dc:creator><dc:creator>Mamian Karen A.<irid>429515374</irid></dc:creator><dc:creator>Belyaev Victor K.<irid>450040627</irid></dc:creator><dc:creator>Fedyanin Andrey A.<irid>238541</irid></dc:creator><dc:creator>Rodionova Valeria V.<irid>414708</irid></dc:creator><prism:publicationName>Optical Materials Express</prism:publicationName><journalRanking type="ImpactFactor" year="2022">2.8</journalRanking><prism:doi>10.1364/ome.478112</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>13</prism:volume><prism:number>1</prism:number><prism:startingPage>171</prism:startingPage><prism:endingPage>178</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/519262980/</prism:url><prism:ID>519262980/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2022-12-16 13:26:54</created> <attachments><url>https://istina.msu.ru/download/530701203/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>This research is devoted to the fabrication of 5-nm thick permalloy film-based magnetoplasmonic crystal for magnetic field sensing applications. Optical and magneto-optical activity of the magnetoplasmonic crystal is studied with the means of numerical modeling and spectroscopy techniques. The studied sample achieves sensitivity to an external DC magnetic field of 7.5 mOe in the 5.1 Oe required modulation AC magnetic field. Obtained experimental and modeling results can be used for the fabrication of cheaper and more energy-efficient sensing elements for magnetoplasmonic crystal-based magnetic field sensors due to the reduction of required ferromagnetic material and modulation magnetic field.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Cascade Acceleration of Electrons in a Plasma Channel Created by Several Petawatt Laser Pulses</dc:title><dc:creator>Starodubtseva E.M.<irid>367797312</irid></dc:creator><dc:creator>Tsymbalov I.N.<irid>7072221</irid></dc:creator><dc:creator>Ivanov K.A.<irid>579944</irid></dc:creator><dc:creator>Gorlova D.A.<irid>27638815</irid></dc:creator><dc:creator>Savel’ev A.B.<irid>386630</irid></dc:creator><prism:publicationName>Bulletin of the Lebedev Physics Institute</prism:publicationName><journalRanking type="ImpactFactor" year="2022">.4</journalRanking><prism:doi>10.3103/s1068335623190156</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>50</prism:volume><prism:number>S7</prism:number><prism:startingPage>S735</prism:startingPage><prism:endingPage>S740</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/602331827/</prism:url><prism:ID>602331827/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>1</val_Scopus><created>2023-10-17 22:19:59</created> <attachments><url>https://istina.msu.ru/download/611484613/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Проведены расчёты каскадного ускорения электронов</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Features of Equipment for Recording Alpha Particles as Applied to Binary Proton Technology of Radio Therapy</dc:title><dc:creator>Karmanov D.E.<irid>583376</irid></dc:creator><dc:creator>Kudryashov I.A.<irid>864241</irid></dc:creator><dc:creator>Kurganov A.A.<irid>39934761</irid></dc:creator><dc:creator>Movchun S.A.<irid></irid></dc:creator><dc:creator>Negodaev M.A.<irid>167423845</irid></dc:creator><dc:creator>Oginov A.V.<irid></irid></dc:creator><dc:creator>Popovich A.F.<irid></irid></dc:creator><dc:creator>Ryabov V.A.<irid></irid></dc:creator><dc:creator>Sedov G.E.<irid>41342038</irid></dc:creator><prism:publicationName>Bulletin of the Lebedev Physics Institute</prism:publicationName><journalRanking type="ImpactFactor" year="2022">.4</journalRanking><prism:doi>10.3103/s1068335623060040</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>50</prism:volume><prism:number>6</prism:number><prism:startingPage>253</prism:startingPage><prism:endingPage>258</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/591043601/</prism:url><prism:ID>591043601/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-05 16:59:06</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>A spectrometer allowing recording nuclear reaction products characteristic of boron—proton radiotherapy technologies is developed. A hardware-software system of the spectrometer allows identifying alpha particles and other light products of nuclear reactions in the energy range of 0.5 MeV—10 MeV is presented. The spectrometer was tested at the Prometeus proton accelerator of the Physico-Technical Center (PTC) LPI (Protvino) and the HELIS installation of the LPI (Moscow). The spectrometer applicability to the study of the p + 11B → 3α nuclear reaction at protons energies used in proton therapy is shown.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Задача быстродействия по остановке двузвенного маятника на подвижном подвесе</dc:title><dc:creator>Потапов А.П.<irid>593479360</irid></dc:creator><dc:creator>Галяев А.А.<irid>41177255</irid></dc:creator><prism:publicationName>Дифференциальные уравнения и процессы управления</prism:publicationName><prism:doi>10.21638/11701/spbu35.2023.204</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>2</prism:number><prism:startingPage>54</prism:startingPage><prism:endingPage>85</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/610280213/</prism:url><prism:ID>610280213/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-11 12:49:53</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В работе рассмотрена задача быстродействия по успокоению двузвенного маятника на подвижном подвесе. Данная нелинейная система с недостатком и ограничением на ресурс управления линеаризована в окрестности устойчивого положения равновесия. Для линеаризованной системы применен принцип максимума Понтрягина и получен закон оптимального управления. Для определения параметров которого на основе нахождения ортогонального подпространства разработан алгоритм построения оптимального по быстродействию управления системой. В среде Matlab разработан программный модуль, при помощи которого произведено сравнение динамики линейной и нелинейной систем при полученном законе управления.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>High-Speed Flow Visualization by a Nanosecond Volume Discharge during Shock Wave Diffraction on an Obstacle</dc:title><dc:creator>Mursenkova I.<irid>534553</irid></dc:creator><dc:creator>Ivanova A.<irid>416135560</irid></dc:creator><dc:creator>Ivanov I.E.<irid>537504</irid></dc:creator><dc:creator>Sysoev N.<irid>536339</irid></dc:creator><dc:creator>Karimov A.<irid>589500892</irid></dc:creator><prism:publicationName>Научная визуализация</prism:publicationName><prism:doi>10.26583/sv.15.3.05</prism:doi> <dc:publisher>НИЯУ МИФИ</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>15</prism:volume><prism:number>3</prism:number><prism:startingPage>40</prism:startingPage><prism:endingPage>49</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/589500893/</prism:url><prism:ID>589500893/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-31 09:41:24</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>We study the spatial structure of nonstationary inhomogeneous supersonic airflows as shock wave diffraction on an obstacle occurs in a shock tube of a rectangular cross section. The Mach numbers of shock waves were 2.7–4.4 at initial air pressures of 10–30 Torr. The supersonic flow in the discharge chamber was visualized by high-speed shadowgraphy and by the registration of radiation of combined volume discharge by photo camera and by ICCD camera. In experiments, a combined volume discharge with a current duration of ~ 500 ns was initiated 40–150 μs after the initial shock wave have passed an obstacle. It has been established that the radiation of the volume phase of discharge lasts 400–700 ns, and the displacement of the flow during this time does not exceed 0.6 mm. A correlation is established between the spatial distribution of discharge radiation and the low-density local areas determined as a result of two-dimensional Navier-Stokes based numerical simulation of the flow. As visualized by the glow of the discharge, the shape of the shock wave front is in good agreement with the results of shadowgraphy at different stages of diffraction and with the numerical simulation results.The work was carried out within the framework of the Interdisciplinary Scientific and Educational School of Moscow State University “Photonic and Quantum Technologies: Digital Medicine”. Project No 001986 «Plasma technologies in interdisciplinary applications: plasma aerodynamics and microelectronics»</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Задача быстродействия обхода нескольких точек машиной Дубинса</dc:title><dc:creator>Майер (Атуова) А.М.<irid>594096510</irid></dc:creator><dc:creator>Галяев А.А.<irid>41177255</irid></dc:creator><prism:publicationName>Труды Института математики и механики УрО РАН</prism:publicationName><prism:doi>10.21538/0134-4889-2023-29-3-42-61</prism:doi> <dc:publisher>Ин-т математики и механики</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>29</prism:volume><prism:number>3</prism:number><prism:startingPage>42</prism:startingPage><prism:endingPage>61</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/610867131/</prism:url><prism:ID>610867131/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-12 16:16:07</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В статье исследуется задача быстродействия последовательного обхода машиной Дубинса трех целевых точек на плоскости. Используется модель машины Дубинса для описания движения объекта в горизонтальной плоскости с постоянной скоростью и ограниченной маневренностью. Рассматривается как фиксированная, так и нефиксированная очередность обхода управляемым объектом целевых точек. Задача является дискретно-непрерывной и содержит три целевых множества. Сложность нахождения решения заключается в невозможности разбить рассматриваемую задачу на ряд двухточечных, так как необходимо учитывать информацию о всех целях для того, чтобы минимизировать время обхода. В исследовании сформулированы необходимые условия оптимальности, с помощью которых разработан алгоритм построения оптимальной траектории в дальней зоне. Получен явный вид оптимального программного управления, решена задача синтеза оптимального управления. Для задачи с фиксированной последовательностью обхода разработан алгоритм построения оптимальной траектории обхода трех и двух целевых точек. Проведено сравнение результатов работы двух алгоритмов. Наиболее интересные результаты моделирования траекторий при различных случаях взаимного расположения целевых точек представлены в статье графически. Для задачи с нефиксированной последовательностью обхода построен алгоритм решения и найдены границы областей, где меняется последовательность обхода точек.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Электронная публикация</category><dc:title>Multiwavelength Fluorescence and Diffuse Reflectance Spectroscopy for an In Situ Analysis of Kidney Stones</dc:title><dc:creator>Tseregorodtseva Polina S.<irid>415879957</irid></dc:creator><dc:creator>Budylin Gleb S.<irid>2346623</irid></dc:creator><dc:creator>Zlobina Nadezhda V.<irid>374436057</irid></dc:creator><dc:creator>Gevorkyan Zare A.<irid>607191446</irid></dc:creator><dc:creator>Filatova Daria A.<irid>35219869</irid></dc:creator><dc:creator>Tsigura Daria A.<irid>621342228</irid></dc:creator><dc:creator>Armaganov Artashes G.<irid>85820603</irid></dc:creator><dc:creator>Strigunov Andrey A.<irid>227150625</irid></dc:creator><dc:creator>Nesterova Olga Y.<irid>342732736</irid></dc:creator><dc:creator>Kamalov David M.<irid>72646020</irid></dc:creator><dc:creator>Afanasyevskaya Elizaveta V.<irid>162884347</irid></dc:creator><dc:creator>Mershina Elena A.<irid>157408062</irid></dc:creator><dc:creator>Sorokin Nikolay I.<irid>180373835</irid></dc:creator><dc:creator>Sinitsyn Valentin E.<irid>24574136</irid></dc:creator><dc:creator>Kamalov Armais A.<irid>9656711</irid></dc:creator><dc:creator>Shirshin Evgeny A.<irid>1074742</irid></dc:creator><prism:publicationName>Photonics</prism:publicationName><journalRanking type="ImpactFactor" year="2022">2.4</journalRanking><prism:doi>10.3390/photonics10121353</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>10</prism:volume><prism:number>12</prism:number><prism:url>http://istina.msu.ru/publications/article/621342539/</prism:url><prism:ID>621342539/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-21 11:32:00</created> <attachments><url>https://istina.msu.ru/download/621342686/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>This study explores the use of diffuse reflectance spectroscopy (DRS) and multiwavelengthfluorescence spectroscopy for real-time kidney stone identification during laser lithotripsy. Traditionalmethods are not suitable for in situ analysis, so the research focuses on optical techniquesthat can be integrated with lithotripsy fibers. Experiments were conducted ex vivo, using DRSand multiwavelength fluorescence spectroscopy (emission–excitation matrix (EEM)) to distinguishbetween 48 urinary stones of three types: urate, oxalate and hydroxyapatite, with infrared spectroscopyas a reference. A classification model was developed based on EEM and DRS data. Initialclassification relying solely on EEM data achieved an f1-score of 87%, which increased to 92% whenDRS data were included. The findings suggest that optical spectroscopy can effectively determinestone composition during laser lithotripsy, potentially enhancing surgical outcomes via the real-timeautomatic optimization of laser radiation parameters.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>A structured jet explains the extreme GRB 221009A</dc:title><dc:creator>Brendan O’Connor<irid>7127636</irid></dc:creator><dc:creator>Troja Eleonora<irid>66661179</irid></dc:creator><dc:creator>Ryan Geoffrey<irid>291950214</irid></dc:creator><dc:creator>Beniamini Paz<irid>569391646</irid></dc:creator><dc:creator>van Eerten Hendrik<irid>229003286</irid></dc:creator><dc:creator>Granot Jonathan<irid>2451519</irid></dc:creator><dc:creator>Dichiara Simone<irid>43621955</irid></dc:creator><dc:creator>Ricci Roberto<irid>20839713</irid></dc:creator><dc:creator>Lipunov Vladimir<irid>381295</irid></dc:creator><dc:creator>Gillanders James H.<irid>569391650</irid></dc:creator><dc:creator>Gill Ramandeep<irid>569391651</irid></dc:creator><dc:creator>Moss Michael<irid>512819</irid></dc:creator><dc:creator>Anand Shreya<irid>569391653</irid></dc:creator><dc:creator>Andreoni Igor<irid>98270164</irid></dc:creator><dc:creator>Becerra Rosa L.<irid>9375340</irid></dc:creator><dc:creator>Buckley David A.H.<irid>39672471</irid></dc:creator><dc:creator>Butler Nathaniel R.<irid>66661180</irid></dc:creator><dc:creator>Cenko Stephen B.<irid>5206738</irid></dc:creator><dc:creator>Chasovnikov Aristarkh<irid>225342874</irid></dc:creator><dc:creator>Durbak Joseph<irid>463281</irid></dc:creator><dc:creator>Francile Carlos<irid>6321713</irid></dc:creator><dc:creator>Hammerstein Erica<irid>569391661</irid></dc:creator><dc:creator>van der Horst Alexander J.<irid>569391662</irid></dc:creator><dc:creator>Kasliwal Mansi M.<irid>569391663</irid></dc:creator><dc:creator>Kouveliotou Chryssa<irid>2049165</irid></dc:creator><dc:creator>Kutyrev Alexander S.<irid>2329325</irid></dc:creator><dc:creator>Lee William H.<irid>66661187</irid></dc:creator><dc:creator>Srinivasaragavan Gokul P.<irid>569391667</irid></dc:creator><dc:creator>Topolev Vladislav<irid>226126401</irid></dc:creator><dc:creator>Watson Alan M.<irid>66661181</irid></dc:creator><dc:creator>Yang Yuhan<irid>10354713</irid></dc:creator><dc:creator>Zhirkov Kirill<irid>229519942</irid></dc:creator><prism:publicationName>Science Advances</prism:publicationName><journalRanking type="ImpactFactor" year="2022">13.6</journalRanking><prism:doi>10.1126/sciadv.adi1405</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>9</prism:volume><prism:number>23</prism:number><prism:url>http://istina.msu.ru/publications/article/569391670/</prism:url><prism:ID>569391670/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-06-19 11:52:24</created> <attachments><url>https://istina.msu.ru/download/569391708/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>https://www.science.org/doi/10.1126/sciadv.adi1405Long-duration gamma-ray bursts (GRBs) are powerful cosmic explosions, signaling the death of massive stars. Among them, GRB 221009A is by far the brightest burst ever observed. Because of its enormous energy (Eiso ≈ 1055 erg) and proximity (z ≈ 0.15), GRB 221009A is an exceptionally rare event that pushes the limits of our theories. We present multiwavelength observations covering the first 3 months of its afterglow evolution. The x-ray brightness decays as a power law with slope ≈t−1.66, which is not consistent with standard predictions for jetted emission. We attribute this behavior to a shallow energy profile of the relativistic jet. A similar trend is observed in other energetic GRBs, suggesting that the most extreme explosions may be powered by structured jets launched by a common central engine.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>The Influence of Elevated CO2 Concentrations on the Growth of Various Microalgae Strains</dc:title><dc:creator>Chunzhuk Elizaveta A.<irid>463785120</irid></dc:creator><dc:creator>Grigorenko Anatoly V.<irid>1438410</irid></dc:creator><dc:creator>Kiseleva Sophia V.<irid>494528</irid></dc:creator><dc:creator>Chernova Nadezhda I.<irid>495429</irid></dc:creator><dc:creator>Ryndin Kirill G.<irid></irid></dc:creator><dc:creator>Kumar Vinod<irid></irid></dc:creator><dc:creator>Vlaskin Mikhail S.<irid>1489599</irid></dc:creator><prism:publicationName>Plants</prism:publicationName><journalRanking type="ImpactFactor" year="2022">4.5</journalRanking><prism:doi>10.3390/plants12132470</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>12</prism:volume><prism:number>13</prism:number><prism:startingPage>2470</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/572630738/</prism:url><prism:ID>572630738/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-06-30 17:26:18</created> <attachments><url>https://istina.msu.ru/download/609344863/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Effects of Light Intensity on the Growth and Biochemical Composition in Various Microalgae Grown at High CO2 Concentrations</dc:title><dc:creator>Chunzhuk Elizaveta A.<irid>463785120</irid></dc:creator><dc:creator>Grigorenko Anatoly V.<irid>1438410</irid></dc:creator><dc:creator>Kiseleva Sophia V.<irid>494528</irid></dc:creator><dc:creator>Chernova Nadezhda I.<irid>495429</irid></dc:creator><dc:creator>Vlaskin Mikhail S.<irid>1489599</irid></dc:creator><dc:creator>Ryndin Kirill G.<irid></irid></dc:creator><dc:creator>Butyrin Aleksey V.<irid></irid></dc:creator><dc:creator>Ambaryan Grayr N.<irid></irid></dc:creator><dc:creator>Dudoladov Aleksandr O.<irid></irid></dc:creator><prism:publicationName>Plants</prism:publicationName><journalRanking type="ImpactFactor" year="2022">4.5</journalRanking><prism:doi>10.3390/plants12223876</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>12</prism:volume><prism:number>22</prism:number><prism:startingPage>3876</prism:startingPage><prism:endingPage>3876</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/615321736/</prism:url><prism:ID>615321736/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-28 16:56:36</created> <attachments><url>https://istina.msu.ru/download/615602021/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Highly Selective Polyene-Polyyne Resistive Gas Sensors: Response Tuning by Low-Energy Ion Irradiation</dc:title><dc:creator>Zavidovskiy I.A.<irid>19791947</irid></dc:creator><dc:creator>Streletskiy O.A.<irid>8547580</irid></dc:creator><dc:creator>Nuriahmetov I.F.<irid>542678445</irid></dc:creator><dc:creator>Nishchak O.Y.<irid>9352266</irid></dc:creator><dc:creator>Savchenko N.F.<irid>7922223</irid></dc:creator><dc:creator>Tatarintsev A.A.<irid>19410072</irid></dc:creator><dc:creator>Pavlikov A.V.<irid>1323642</irid></dc:creator><prism:publicationName>Journal of Composites Science</prism:publicationName><prism:doi>10.3390/jcs7040156</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>7</prism:volume><prism:number>4</prism:number><prism:url>http://istina.msu.ru/publications/article/548996503/</prism:url><prism:ID>548996503/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-04-11 11:26:10</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The formation of polyene-polyyne-based nanocomposites by dehydrohalogenation of the drop-cast-deposited polyvinylidene fluoride, assessment and ion-induced tailoring of their gas sensing properties are reported. The investigated structure was analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy and Fourier-transform infrared spectroscopy, revealing the thickness-dependent incomplete dehydrofluorination of the structure and its porosity induced by KOH treatment. The polyene-polyyne structures modified by low-energy Ar+ were studied by SEM and Raman spectroscopy, which showed the morphology variation, the shortening of chains and the graphitization of samples. The resistive gas sensing properties of the samples were analyzed at room temperature, revealing selective sensing of ammonia vapor by non-irradiated sample and the enhancement of the sensing properties for ethanol and water vapor after ion irradiation. With the ion dose enlargement, the change in the sensing response from electrical conductivity increase to decrease was observed for ammonia and ethanol, allowing us to discuss the origin and tunability of the sensing mechanism of the samples.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>The Field-Effect Transistor Based on a Polyyne–Polyene Structure Obtained via PVDC Dehydrochlorination</dc:title><dc:creator>Streletskiy Oleg A.<irid>8547580</irid></dc:creator><dc:creator>Zavidovskiy Ilya A.<irid>19791947</irid></dc:creator><dc:creator>Nuriahmetov Islam F.<irid>542678445</irid></dc:creator><dc:creator>Khaidarov Abdusame A.<irid>8515826</irid></dc:creator><dc:creator>Pavlikov Alexander V.<irid>1323642</irid></dc:creator><dc:creator>Minnebaev Kashif F.<irid>8492507</irid></dc:creator><prism:publicationName>Journal of Composites Science</prism:publicationName><prism:doi>10.3390/jcs7070264</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>7</prism:volume><prism:number>7</prism:number><prism:startingPage>264</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/570245934/</prism:url><prism:ID>570245934/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-06-22 18:43:30</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>We report on the formation of the field-effect transistor based on a polyyne–polyene structure. Polyvinylidene chloride (PVDC) drop casting and its subsequent dehydrochlorination in KOH solution allowed for the formation of porous polyyne–polyene material, which was analyzed via transmission electron microscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy, revealing the presence of sp- and sp2-hybridized chained fragments in the structure. The polyyne–polyene-based field-effect transistor showed a transconductance of 3.2 nA/V and a threshold voltage of −0.3 V. The obtained results indicate that polyyne–polyene-based transistors can be used as discrete elements of molecular electronics and that subsequent studies can be aimed toward the development of selective polyyne–polyene-based gas sensors with tunable sensitivity.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>From the Cultivation of Arthrospira platensis at an Increased CO2 Concentration to the Bio-Oil Production by Hydrothermal Liquefaction</dc:title><dc:creator>Ryndin Kirill G.<irid></irid></dc:creator><dc:creator>Butyrin Aleksey V.<irid></irid></dc:creator><dc:creator>Grigorenko Anatoly V.<irid>1438410</irid></dc:creator><dc:creator>Chunzhuk Elizaveta A.<irid>463785120</irid></dc:creator><dc:creator>Chernova Nadezhda I.<irid>495429</irid></dc:creator><dc:creator>Kiseleva Sofya V.<irid>494528</irid></dc:creator><dc:creator>Malaniy Sergey Y.<irid></irid></dc:creator><dc:creator>Bakumenko Ekaterina A.<irid></irid></dc:creator><dc:creator>Slavkina Olga V.<irid></irid></dc:creator><dc:creator>Ossipov Konstantin<irid></irid></dc:creator><dc:creator>Maryutina Tatiana A.<irid></irid></dc:creator><dc:creator>Kumar Vinod<irid></irid></dc:creator><dc:creator>Vlaskin Mikhail S.<irid>1489599</irid></dc:creator><prism:publicationName>Applied Sciences</prism:publicationName><journalRanking type="ImpactFactor" year="2022">2.7</journalRanking><prism:doi>10.3390/app13179950</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>13</prism:volume><prism:number>17</prism:number><prism:startingPage>9950</prism:startingPage><prism:endingPage>9950</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/591969118/</prism:url><prism:ID>591969118/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-08 21:01:35</created> <attachments><url>https://istina.msu.ru/download/609344336/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Photophysical Properties of Eu3+ β-Diketonates with Extended π-Conjugation in the Aromatic Moiety</dc:title><dc:creator>Tsorieva A.V.<irid>533712270</irid></dc:creator><prism:publicationName>INORGANICS</prism:publicationName><journalRanking type="ImpactFactor" year="2022">2.9</journalRanking><prism:doi>10.3390/inorganics11010015</prism:doi> <dc:publisher>Molecular Diversity Preservation International (MDPI)</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>11</prism:volume><prism:number>1</prism:number><prism:url>http://istina.msu.ru/publications/article/533712320/</prism:url><prism:ID>533712320/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-02-07 00:51:25</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The influence of the degree of π-conjugation in biaroylmethane ligands upon Eu3+ luminescence efficiency in corresponding neutral tris-complexes was investigated in depth. The data obtained by both steady-state and time-resolved luminescence measurements gave an inside into electronic energy transfer mechanisms in the abovementioned complexes. It was shown that extension of the π-system in the naphthalene moiety in comparison to the phenyl one lead to a substantial decrease of both the S1 and T1 energy of the corresponding symmetrical β-diketones, which, in turn, led to a decrease of the total quantum yield of respective Eu3+ complexes. The obtained results are of interest for the rational design of highly luminescent complexes with NIR-emitting lanthanides, as the resonant levels energies are low and can hardly be sensitized by common ligands.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Mercury’s Bow Shock and Magnetopause Variations According to MESSENGER Data</dc:title><dc:creator>Nevsky Dmitry<irid>136921775</irid></dc:creator><dc:creator>Lavrukhin Alexander<irid>9640993</irid></dc:creator><dc:creator>Alexeev Igor<irid>397642</irid></dc:creator><prism:publicationName>Universe</prism:publicationName><journalRanking type="ImpactFactor" year="2022">2.9</journalRanking><prism:doi>10.3390/universe10010040</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>10</prism:volume><prism:number>1</prism:number><prism:startingPage>40</prism:startingPage><prism:endingPage>40</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/622152153/</prism:url><prism:ID>622152153/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-17 14:49:34</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Using data from the MESSENGER spacecraft magnetometer that describes the magnetopause and the bow shock crossing points of the Mercury’s magnetosphere, we have calculated the parameters of the paraboloids of revolution approximating the obtained points. For each spacecraft orbit, the subsolar magnetopause and bow shock standoff distances were obtained, based on the paraboloid parameters for each crossing point. The dependences of the magnetopause and bow shock subsolar standoff distances on the Mercury’s position relative to the Sun have been obtained. These profiles agree with decreases of the solar wind plasma dynamic pressure and the interplanetary magnetic field strength with heliocentric distance. The variations of the interplanetary and magnetosheath magnetic field were investigated. The average subsolar magnetosheath thickness and the value of the magnetic field jump at the bow shock during the transition from the upstream interplanetary magnetic field region to the magnetosheath were obtained.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Formation of Complexes of f-Elements with Electron-Withdrawing N-Heterocyclic Diamides: Extraction and Solution Photophysics</dc:title><dc:creator>Borisova Nataliya E.<irid>826726</irid></dc:creator><dc:creator>Kharcheva Anastasiia V.<irid>7689569</irid></dc:creator><dc:creator>Shmelkov Kirill D.<irid>624443241</irid></dc:creator><dc:creator>Gerasimov Mikhail A.<irid>19849272</irid></dc:creator><dc:creator>Evsiunina Mariia V.<irid>151034205</irid></dc:creator><dc:creator>Matveev Petr I.<irid>9012367</irid></dc:creator><dc:creator>Ivanov Alexey V.<irid>2130208</irid></dc:creator><dc:creator>Sokolovskaya Yulia G.<irid>25688412</irid></dc:creator><dc:creator>Patsaeva Svetlana V.<irid>420560</irid></dc:creator><prism:publicationName>Metals</prism:publicationName><journalRanking type="ImpactFactor" year="2022">2.9</journalRanking><prism:doi>10.3390/met13122024</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>13</prism:volume><prism:number>12</prism:number><prism:url>http://istina.msu.ru/publications/article/622000753/</prism:url><prism:ID>622000753/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-15 16:30:26</created> <attachments><url>https://istina.msu.ru/download/624443481/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>To examine the scope of the abnormal aryl strengthening effect (an increase in the extraction of metal ions when an aromatic substituent is introduced into the amide group) on f-metal extraction, a series of tetradentate diamide-type extragents bearing electron-withdrawing pyridine rings in amide moieties of the molecules were tested. The solvent extraction of Am(III)/Eu(III) pairs was investigated under various conditions, the solution chemistry of the lanthanide-extragents systems was studied, and the bonding constants were calculated for complexes of Eu(III) and Tb(III) ions with diamides. The photophysical properties of chemically synthesized ligand/metal (LM) complexes with various LM compositions were additionally studied in depth. The replacement of a phenyl ring by a pyridine one led to a critical reduction in metal affinity, showing the major contribution of electronic nature to the abnormal aryl strengthening effect. However, the pyridine group in the amide side chain provided additional coordination positions for metal ion binding; corresponding complexes with LM2 composition were detected in the system and their stability was calculated. Due to the low stability of the corresponding LM2 complexes, chemical synthesis of the complexes led to the formation of only one metal-containing species with LM composition. The luminescence spectra of europium and terbium complexes of the LM composition were studied. Differences were discovered in the luminescence excitation spectra of europium and terbium complexes with the same ligand. The luminescence quantum yields and luminescence lifetimes of solutions of europium and terbium complexes were determined.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Bio-Inspired Design of Superconducting Spiking Neuron and Synapse</dc:title><dc:creator>Schegolev Andrey E.<irid>6023629</irid></dc:creator><dc:creator>Klenov Nikolay V.<irid>499407</irid></dc:creator><dc:creator>Gubochkin Georgy I.<irid>369442928</irid></dc:creator><dc:creator>Kupriyanov Mikhail Yu<irid>413045</irid></dc:creator><dc:creator>Soloviev Igor I.<irid>499405</irid></dc:creator><prism:publicationName>Nanomaterials</prism:publicationName><journalRanking type="ImpactFactor" year="2022">5.3</journalRanking><prism:doi>10.3390/nano13142101</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>13</prism:volume><prism:number>14</prism:number><prism:startingPage>2101</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/578906207/</prism:url><prism:ID>578906207/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-07-19 10:32:47</created> <attachments><url>https://istina.msu.ru/download/578906214/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The imitative modelling of processes in the brain of living beings is an ambitious task. However, advances in the complexity of existing hardware brain models are limited by their low speed and high energy consumption. A superconducting circuit with Josephson junctions closely mimics the neuronal membrane with channels involved in the operation of the sodium-potassium pump. The dynamic processes in such a system are characterised by a duration of picoseconds and an energy level of attojoules. In this work, two superconducting models of a biological neuron are studied. New modes of their operation are identified, including the so-called bursting mode, which plays an important role in biological neural networks. The possibility of switching between different modes in situ is shown, providing the possibility of dynamic control of the system. A synaptic connection that mimics the short-term potentiation of a biological synapse is developed and demonstrated. Finally, the simplest two-neuron chain comprising the proposed bio-inspired components is simulated, and the prospects of superconducting hardware biosimilars are briefly discussed.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Asymmetry of structural and electrophysical properties of symmetrical titania nanotubes as a result of modification with barium titanate</dc:title><dc:creator>Konstantinova Elizaveta<irid>415137</irid></dc:creator><dc:creator>Zaitsev Vladimir<irid>1346222</irid></dc:creator><dc:creator>Kytina Ekaterina<irid>334085084</irid></dc:creator><dc:creator>Martyshov Mikhail<irid>587285</irid></dc:creator><dc:creator>Savchuk Timofey<irid>354351714</irid></dc:creator><dc:creator>Butmanov Danil<irid></irid></dc:creator><dc:creator>Dronova Daria<irid></irid></dc:creator><dc:creator>Krupanova Daria<irid></irid></dc:creator><dc:creator>Volkova Lidiya<irid></irid></dc:creator><dc:creator>Tarasov Andrey<irid></irid></dc:creator><prism:publicationName>Symmetry</prism:publicationName><journalRanking type="ImpactFactor" year="2022">2.7</journalRanking><prism:doi>10.3390/sym15122141</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>15</prism:volume><prism:url>http://istina.msu.ru/publications/article/613025059/</prism:url><prism:ID>613025059/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-20 12:06:35</created> <attachments><url>https://istina.msu.ru/download/616998062/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Anodic titania nanotubes (TiO2-NT) are very promising for the use in photocatalysis and photovoltaics due to their developed surface, symmetrical structure, and conductive properties, which, moreover, makes them a convenient matrix for creating various nanocomposites. Herein we propose a new facile way of synthesis of symmetrical TiO2-NT followed by modification with barium titanate (BaTiO3) nanoparticles, combining the advantages of electrochemical oxidation and hydrothermal synthesis. The electrophysical and optoelectronic properties of the formed nanocomposites have been studied. Asymmetry of current-voltage characteristics was revealed. It is shown that during the barium titanate deposition, a symmetry-breaking nanoheterojunction TiO2/BaTiO3 is formed. Using EPR spectroscopy, paramagnetic defects (titanium, barium and oxygen vacancies) in the samples were determined. It was observed for the first time that upon illumination of titania nanotubes modified with BaTiO3, the asymmetrical separation of photoexcited charge carriers (electrons and holes) between TiO2-NT and BaTiO3 occurs, followed by the capture of electrons and holes by defects. As a result, the photoinduced charge accumulates on the defects.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Spatially inhomogeneous inverse Faraday effect provides tunable nonthermal excitation of exchange dominated spin waves</dc:title><dc:creator>Krichevsky Denis M.<irid>19263690</irid></dc:creator><dc:creator>Ozerov Vladislav A.<irid>7680479</irid></dc:creator><dc:creator>Bel’kova Alexandra V.<irid>353635785</irid></dc:creator><dc:creator>Sylgacheva Daria A.<irid>16976996</irid></dc:creator><dc:creator>Kalish Andrey N.<irid>520921</irid></dc:creator><dc:creator>Evstigneeva Svetlana A.<irid>71152553</irid></dc:creator><dc:creator>Pakhomov Alexander S.<irid>42122820</irid></dc:creator><dc:creator>Mikhailova Tatiana V.<irid>3495625</irid></dc:creator><dc:creator>Lyashko Sergey D.<irid>147043018</irid></dc:creator><dc:creator>Kudryashov Alexander L.<irid>2377263</irid></dc:creator><dc:creator>Semuk Evgeny Yu<irid>1101927</irid></dc:creator><dc:creator>Chernov Alexander I.<irid>9064187</irid></dc:creator><dc:creator>Berzhansky Vladimir N.<irid>3495621</irid></dc:creator><dc:creator>Belotelov Vladimir I.<irid>406006</irid></dc:creator><prism:publicationName>NANOPHOTONICS</prism:publicationName><journalRanking type="ImpactFactor" year="2022">7.5</journalRanking><prism:doi>10.1515/nanoph-2023-0626</prism:doi> <dc:publisher>Walter de Gruyter</dc:publisher><prism:publicationDate>2024</prism:publicationDate><prism:number>0</prism:number><prism:url>http://istina.msu.ru/publications/article/623594328/</prism:url><prism:ID>623594328/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-23 09:28:18</created> <attachments><url>https://istina.msu.ru/download/623872169/</url><url>https://istina.msu.ru/download/623872171/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Magnetic fields with random initial conditions in discs with Kepler rotation curve</dc:title><dc:creator>Grachev Denis A.<irid>1422639</irid></dc:creator><dc:creator>Mikhailov Evgeny A.<irid>6928660</irid></dc:creator><dc:creator>Zhikhareva Ekaterina N.<irid>619229647</irid></dc:creator><prism:publicationName>Open Astronomy</prism:publicationName><journalRanking type="ImpactFactor" year="2022">.7</journalRanking><prism:doi>10.1515/astro-2022-0216</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>32</prism:volume><prism:number>1</prism:number><prism:url>http://istina.msu.ru/publications/article/536918376/</prism:url><prism:ID>536918376/</prism:ID><is_vak>0</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-02-19 02:29:53</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Stimulation of Muscle Cells Using a Microbial Fuel Cell</dc:title><dc:creator>Vakhnitskaya E.S.<irid>567968210</irid></dc:creator><dc:creator>Romanov A.O.<irid>60587615</irid></dc:creator><dc:creator>Bazyleva K.Yu<irid>396977136</irid></dc:creator><dc:creator>Gabdrakhmanova A.F.<irid>567968327</irid></dc:creator><dc:creator>Gafurova D.D.<irid>567968328</irid></dc:creator><dc:creator>Kasatkina A.N.<irid>567968329</irid></dc:creator><dc:creator>Gulyaev N.A.<irid>567968330</irid></dc:creator><dc:creator>Shchembelov I.I.<irid>567968212</irid></dc:creator><dc:creator>Bogomolov N.M.<irid>567968331</irid></dc:creator><dc:creator>Barzaev M.K.<irid>567968213</irid></dc:creator><dc:creator>Sharikova N.A.<irid>567968214</irid></dc:creator><prism:publicationName>Nanobiotechnology Reports</prism:publicationName><prism:doi>10.1134/S2635167623010159</prism:doi> <dc:publisher>Pleiades Publishing, Ltd</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>18</prism:volume><prism:number>1</prism:number><prism:startingPage>106</prism:startingPage><prism:endingPage>111</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/567968215/</prism:url><prism:ID>567968215/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-06-14 13:11:27</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>РАСЧЕТ ЧИСЛА КАНАЛОВ ПРОВОДИМОСТИ В ОДНОЭЛЕКТРОННОЙ РЕЗЕРВУАРНОЙ СЕТИ НА МЕТАЛЛОРГАНИЧЕСКИХ КАРКАСНЫХ ПОЛИМЕРАХ</dc:title><dc:creator>Панкратов С.А.<irid>400509045</irid></dc:creator><dc:creator>Паршинцев А.А.<irid>1685853</irid></dc:creator><dc:creator>Преснов Д.Е.<irid>535801</irid></dc:creator><dc:creator>Шорохов В.В.<irid>565027</irid></dc:creator><prism:publicationName>Известия Российской академии наук. Серия физическая</prism:publicationName><journalRanking type="ImpactFactor" year="2001">.088</journalRanking><prism:doi>10.31857/S0367676522700132</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>87</prism:volume><prism:number>1</prism:number><prism:startingPage>71</prism:startingPage><prism:endingPage>78</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/554339115/</prism:url><prism:ID>554339115/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-03 17:42:37</created> <attachments><url>https://istina.msu.ru/download/562416029/</url><url>https://istina.msu.ru/download/562416014/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>С помощью теории функционала плотности получены одночастичные спектры фрагментов одномерной цепочки металлорганического координационного полимера. Рассчитано эффективное сопротивление органического участка звена, характерная кулоновская энергия и емкость зарядового центра. Получена оценка количества каналов проводимости в экспериментально исследуемой резервуарной сети на основе рассматриваемых полимерных цепочек. Pankratov, S.A., Parshintsev, A.A., Presnov, D.E. et al. Calculating the Number of Conduction Channels in a Single-Electron Reservoir Network Based on a Metal-Organic Framework Polymer. Bull. Russ. Acad. Sci. Phys. 87, 59–65 (2023). https://doi.org/10.3103/S1062873822700149Published 10 April 2023</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>FeNi нанопроволоки как перспективный наполнитель магниточувствительного геля</dc:title><dc:creator>Филиппова Ю.А.<irid>405366671</irid></dc:creator><dc:creator>Бижецкий А.С.<irid>611803052</irid></dc:creator><dc:creator>Папугаева А.В.<irid>505783115</irid></dc:creator><dc:creator>Панов Д.В.<irid>408187178</irid></dc:creator><dc:creator>Бедин С.А.<irid>10334640</irid></dc:creator><dc:creator>Шибаев А.В.<irid>275217</irid></dc:creator><dc:creator>Филиппова О.Е.<irid>455337</irid></dc:creator><dc:creator>Разумовская И.В.<irid>11208825</irid></dc:creator><prism:publicationName>Известия Российской академии наук. Серия физическая</prism:publicationName><journalRanking type="ImpactFactor" year="2001">.088</journalRanking><prism:doi>10.31857/S0367676523702538</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>87</prism:volume><prism:number>10</prism:number><prism:startingPage>1452</prism:startingPage><prism:endingPage>1456</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/588889512/</prism:url><prism:ID>588889512/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-29 13:23:22</created> <attachments><url>https://istina.msu.ru/download/588889577/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Описан метод получения железо-никелевых нанопроволок длиной 5 мкм и диаметром 100 нм с использованием шаблонного синтеза на базе трековых мембран. Методом растровой электронной микроскопии оценена фактическая длина полученных FeNi нанопроволок, исследован их элементный состав и структура. Обоснована возможность использования синтезированных нанопроволок для получения магнитных полимерных гелей.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Approximation of the lateral distribution function of the Cherenkov light from extensive air showers in the primary energy region 1-100 PeV</dc:title><dc:creator>Latypova Vasilisa<irid>322000705</irid></dc:creator><dc:creator>Azra Clemence<irid>488741851</irid></dc:creator><dc:creator>Bonvech Elena<irid>843212</irid></dc:creator><dc:creator>Chernov Dmitry<irid>564728</irid></dc:creator><dc:creator>Galkin Vladimir<irid>394024</irid></dc:creator><dc:creator>Ivanov Vladimir<irid>342242027</irid></dc:creator><dc:creator>Podgrudkov Dmitry<irid>350224240</irid></dc:creator><dc:creator>Roganova Tatiana M.<irid>393396</irid></dc:creator><prism:publicationName>Proceedings of Science</prism:publicationName><prism:doi>10.22323/1.423.0069</prism:doi> <dc:publisher>Sissa Medialab</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>423</prism:volume><prism:number>ECRS</prism:number><prism:startingPage>1</prism:startingPage><prism:endingPage>8</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/537027777/</prism:url><prism:ID>537027777/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-02-20 21:02:42</created> <attachments><url>https://istina.msu.ru/download/537027822/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Cherenkov light lateral distribution function approximation that describes an individual extensive air shower was found. It is designed for showers from various primary nuclei in the 1--100 PeV energy range with zenith angles up to 20∘ and distances from the shower axis of up to 500 meters. Approximation accuracy is better than 10%. Initially, the approximation was intended for processing events of the SPHERE-2 experiment, but it can also be applied to any other experiment that uses the Cherenkov light lateral distribution function at the ground level. A comparison was made with simpler approximating functions used in the SPHERE-2 processing and in the TAIGA experiment.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Наведенное магнитное поле в аккреционных дисках вокруг нейтронных звезд</dc:title><dc:creator>Кузин Алексей Вячеславович<irid>230942488</irid></dc:creator><prism:publicationName>Письма в Астрономический журнал: Астрономия и космическая астрофизика</prism:publicationName> <dc:publisher>ФГБУ "Издательство "Наука"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>49</prism:volume><prism:number>10</prism:number><prism:startingPage>669</prism:startingPage><prism:endingPage>676</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/630493441/</prism:url><prism:ID>630493441/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-16 14:42:28</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В рентгеновских источниках с пульсациями замагниченную нейтронную звезду окружает аккреционный диск, особенности структуры которого требуют изучения. В частности, дипольное поле звезды может частично проникать в диск, и, вмораживаясь в вещество, приводить к появлению наведенного поля в диске. Рост поля может быть ограничен его турбулентной диффузией. В настоящей работе проведен расчет такого наведенного поля. Задача сведена к решению уравнения индукции при наличии диффузии. Получено аналитическое решение уравнения, при этом одновременно рассчитана радиальная и вертикальная структура наведенного поля. Радиальная структура близка к ранее предсказанной зависимости от разности скоростей диска и магнитосферы: $b \propto \omegas - \omegak$, а вертикальная структура поля близка к линейной пропорциональности между полем и высотой над экватором: $b \propto z$. Обсуждается возможность существования нестационарных квазипериодических составляющих наведенного магнитного поля</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Исследование вспышечной активности BL Lac в период июль–ноябрь 2021 г</dc:title><dc:creator>Уголькова Л.С.<irid>2213002</irid></dc:creator><dc:creator>Пширков М.С.<irid>475185</irid></dc:creator><dc:creator>Горанский В.П.<irid>2037693</irid></dc:creator><dc:creator>Иконникова Н.П.<irid>415010</irid></dc:creator><dc:creator>Сафонов Б.С.<irid>1060317</irid></dc:creator><dc:creator>Татарников А.М.<irid>383508</irid></dc:creator><dc:creator>Шимановская Е.В.<irid>1085477</irid></dc:creator><dc:creator>Бурлак М.А.<irid>415166</irid></dc:creator><dc:creator>Афонина М.Д.<irid>396082868</irid></dc:creator><prism:publicationName>Письма в Астрономический журнал: Астрономия и космическая астрофизика</prism:publicationName><prism:doi>10.31857/S0320010823050078</prism:doi> <dc:publisher>ФГБУ "Издательство "Наука"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>49</prism:volume><prism:number>5</prism:number><prism:startingPage>308</prism:startingPage><prism:endingPage>321</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/586463790/</prism:url><prism:ID>586463790/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-18 15:56:40</created> <attachments><url>https://istina.msu.ru/download/587397516/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Источник BL Lac демонстрировал повышенную активность с августа 2020 до июля 2022 г. Максимумэтой активности пришелся на период июль–август 2021 г. В этот период источник достиг историческихмаксимумов яркости в различных энергетических диапазонах. Наблюдения этого нестандартногомаксимума проводились сотрудниками ГАИШ Крымской станции ГАИШ и на телескопах Кавказскойгорной обсерватории (КГО ГАИШ МГУ). Были получены данные фотометрических наблюденийв оптическом диапазоне и ближней инфракрасной области, а также поляриметрические данные воптике. При исследовании корреляции оптического и гамма-излучения, оптического и ИК-излученияподтвердилась ее высокая степень с почти нулевым запаздыванием—это значит, что области излучения пространственно совпадают либо расположены очень близко друг от друга. Степень линейнойполяризации в исследуемый период менялась в широких пределах, достигая значения 20%, причемнаблюдалась антикорреляция степени линейной поляризации с яркостью объекта. Подобный характеризменения наблюдался и в предшествующие вспышки этого объекта. Изменения направления векторанапряженности электрического поля (EVPA) показывают зависимость от скорости изменения яркости объекта. Угол вектора напряженности электрического поля сильно менялся при вспышках, а в моменты медленного изменения интенсивности менялся медленно.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Явления в коронном разряде над жидкими электродами</dc:title><dc:creator>Бычков В.Л.<irid>6851804</irid></dc:creator><dc:creator>Сороковых Д.E.<irid>538421296</irid></dc:creator><dc:creator>Горячкин П.А.<irid>321982753</irid></dc:creator><dc:creator>Бычков Д.В.<irid>5095717</irid></dc:creator><dc:creator>Черников В.А.<irid>8452320</irid></dc:creator><prism:publicationName>Успехи прикладной физики</prism:publicationName><prism:doi>10.51368/2307-4469-2023-11-1-22-31</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>1</prism:number><prism:startingPage>22</prism:startingPage><prism:endingPage>31</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/537142152/</prism:url><prism:ID>537142152/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-02-22 21:33:27</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>DOI : 10.51368/2307-4469-2023-11-1-22-31Проделаны электрогидродинамические эксперименты с разрядами над поверхностью жидкостей.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Воздействие струи плазмы капиллярного плазмотрона на металлы</dc:title><dc:creator>Байдак В.А.<irid>3027352</irid></dc:creator><dc:creator>Бычков В.Л.<irid>6851804</irid></dc:creator><dc:creator>Сороковых Д.Е.<irid>538421296</irid></dc:creator><dc:creator>Бычков Д.В.<irid>5095730</irid></dc:creator><dc:creator>Ваулин Д.Н.<irid>8502995</irid></dc:creator><prism:publicationName>Успехи прикладной физики</prism:publicationName><prism:doi>10.51368/2307-4469-2023-11-5-399-406</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>11</prism:volume><prism:number>5</prism:number><prism:startingPage>399</prism:startingPage><prism:endingPage>405</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/602331327/</prism:url><prism:ID>602331327/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-10-17 21:07:27</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Проведены эксперименты по воздействию струи капиллярного плазмотрона на стальные, медные образцы и проволоки из припоя. Энергия, вложенная в разряд, варьировалась от 0,3 до 1,5 кДж. При этом при взаимодействии струи капиллярного плазмотрона с припоем происходило образование компактных долгоживущих светящихся образований (КСО). При воздействии на припой получены КСО с необычно большими размерами внешним диаметром до 1,5 см, внутренним диаметром до 0,5 см и временем жизни до 7 с, которые состоят из ядра и оболочки и обладают плотностью энергии сравнимой с плотностью энергии горючих материалов.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Resistive Gas Sensors Based on Porous Sp-Containing Films Obtained by Dehydrohalogenation of PVDC and PVDC-PVC Copolymer</dc:title><dc:creator>Streletskiy O.A.<irid>8547580</irid></dc:creator><dc:creator>Zavidovskiy I.A.<irid>19791947</irid></dc:creator><dc:creator>Nuriahmetov I.F.<irid>542678445</irid></dc:creator><dc:creator>Nishchak O.Y.<irid>9352266</irid></dc:creator><dc:creator>Pavlikov A.V.<irid>1323642</irid></dc:creator><dc:creator>Savchenko N.F.<irid>7922223</irid></dc:creator><prism:publicationName>C — Journal of Carbon Research</prism:publicationName><prism:doi>10.3390/c9030082</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>9</prism:volume><prism:number>3</prism:number><prism:url>http://istina.msu.ru/publications/article/588582121/</prism:url><prism:ID>588582121/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-28 12:15:09</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Resistive sensing responses of the thin films obtained by dehydrohalogenation of polyvinylidene chloride (PVDC) and polyvinylidene chloride–polyvinyl chloride (PVDC-PVC) copolymer were investigated. The structure of the samples was studied by transmission electron microscopy, Fourier-transform infrared spectroscopy and Raman spectroscopy. The analyses demonstrate the formation of a porous structure based on polyyne–polyene chains. The formation of a foam-like oxidized sp-rich structure was observed for the samples obtained via the chemical treatment of the PVDC. However, a loose film with a developed structure and a lower fraction of sp-hybridized carbon was observed for KOH-treated PVDC-PVC. The resistive sensing responses of both of the dehydrohalogenated structures were measured for various concentrations of acetone, acetic acid, ammonia hydroxide, methanol, ethanol, benzene and water. The interplay between the efficiency of the dehydrohalogenation of the films, their structure and sensing selectivity is discussed.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Электронная публикация</category><dc:title>GRB 220921A, GRB 180914B, GRB 170522A, GRB 181002A error-fields optical observations by MASTER</dc:title><dc:creator>Antipov G.A.<irid>421264532</irid></dc:creator><dc:creator>Chasovnikov A.R.<irid>225342874</irid></dc:creator><dc:creator>Lipunov V.M.<irid>381295</irid></dc:creator><dc:creator>Zhirkov K.K.<irid>229519942</irid></dc:creator><dc:creator>Gress O.A.<irid>164879139</irid></dc:creator><dc:creator>Balanutsa P.V.<irid>383572</irid></dc:creator><dc:creator>Ershova O.A.<irid>523140009</irid></dc:creator><dc:creator>Konovalova V.V.<irid>523139498</irid></dc:creator><prism:publicationName>Астрономический циркуляр</prism:publicationName><prism:doi>10.24412/0236-2457-1655-1-4</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>1655</prism:volume><prism:startingPage>1</prism:startingPage><prism:endingPage>5</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/538427628/</prism:url><prism:ID>538427628/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-03-01 20:17:23</created> <attachments><url>https://istina.msu.ru/download/538427653/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>We present the results of GRB 220921A, GRB 180914B, GRB 181002A and GRB 170522A observations, made by MASTER Global Robotic Net telescopes, including MASTER OT J220925.53+250343.3 and MASTER OT J042553.42-402420.7 / AT2022vjw optical counterparts detectiondoi: 10.24412/0236-2457-1655-1-4 https://cyberleninka.ru/search?q=10.24412%2F0236-2457-1655-1-4&page=1</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Электронная публикация</category><dc:title>Ранняя фотометрия сверхновых MASTER OT J114925.48-050713.8, MASTER OT J230024.63+013736.8, MASTER OT J230024.63+013736.8</dc:title><dc:creator>Часовников А.<irid>225342874</irid></dc:creator><dc:creator>Тополев В.<irid>226126401</irid></dc:creator><dc:creator>Жирков К.<irid>229519942</irid></dc:creator><dc:creator>Буднев Н.<irid>229004398</irid></dc:creator><dc:creator>Власенко Д.<irid>12002852</irid></dc:creator><dc:creator>Липунов В.<irid>381295</irid></dc:creator><dc:creator>Гресь О.<irid>164879139</irid></dc:creator><dc:creator>Балануца П.<irid>383572</irid></dc:creator><dc:creator>Ершова О.<irid>523140009</irid></dc:creator><prism:publicationName>Астрономический циркуляр</prism:publicationName><prism:doi>10.24412/0236-2457-2023-1653-1-4</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>1653</prism:volume><prism:startingPage>1</prism:startingPage><prism:endingPage>4</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/538423653/</prism:url><prism:ID>538423653/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-03-01 14:59:03</created> <attachments><url>https://istina.msu.ru/download/538426917/</url><url>https://istina.msu.ru/download/538423679/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В циркуляре приводятся результаты фотометрии оптических переменных объектов, открытых на телескопах-роботах Глобальной сети МАСТЕР: Сверхновые MASTER OTJ114925.48-050713.8 в галактике IC2963, MASTER OT J233743.22-473039.3 в галактикеESO240-010, MASTER OT J230024.63+013736.8 в галактике UGC12295. DOI:10.24412/0236-2457-2023-1653-1-4ISSN 0236-2457 http://www.sai.msu.su/EAAS/AC/contents.htmlАСТРОНОМИЧЕСКИЙ ЦИРКУЛЯРИздается Международной общественной организацией “Астрономическое общество”и Государственным астрономическим институтом имени П.К. Штернберга МГУ</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Mitigation carbon emissions by microalgae: Assessing the viability of culture Arthrospira platensis grown on high CO2 concentrations</dc:title><dc:creator>Chernova Nadezhda<irid>495429</irid></dc:creator><dc:creator>Kiseleva Sophia<irid>494528</irid></dc:creator><dc:creator>Chunzhuk Elizaveta<irid>463785120</irid></dc:creator><dc:creator>Grigorenko Anatoliy<irid>1438410</irid></dc:creator><dc:creator>Vlaskin Mikhail<irid>1489599</irid></dc:creator><prism:publicationName>E3S Web of Conferences</prism:publicationName><prism:doi>10.1051/e3sconf/202340703012</prism:doi> <dc:publisher>EDP Sciences</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>407</prism:volume><prism:startingPage>03012</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/583197436/</prism:url><prism:ID>583197436/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-03 13:43:42</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>In this work, experimentally evaluated the viability of a consortium microalgae Arthrospira platensis rsemsu P Bios with heterotrophic bacteria when cultivated in a gas-air mixture with high concentrations of CO2 (from 0.04 to 9%). A laboratory setup was created to test the viability of microalgae strains at high concentrations of CO2. The experiments were carried out using 12 photobioreactors with a culture medium volume of 4 L each, placed in a gas chamber, which makes it possible to create elevated CO2 concentrations in the gas-air medium. The maximum growth rate of biomass of microalgae A. platensis is 170 mg/(l per day), the maximum absolute increase in biomass for 12 days is 1540 mg/l. The relatively low growth rate and absolute increase in the biomass of A. platensis at all concentrations of CO2 in the gas-air mixture may indicate that this culture requires a longer laboratory adaptation to high concentrations of CO2. The high cell viability found in all experiments by cytochemical staining of cells with methylene blue indicates the acquired tolerance of the culture to elevated CO2 concentrations (3–9%). However, after 12 days of the experiment with 9% CO2, morphometric signs of cell suppression are detected, which is expressed in deviations of the cell shape from normal, elongation (lack of division) and an increase in the number of dead cells. Quantitative characteristics of the microalgae consortium viability have been obtained.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>GRB 231111A: MASTER OT earlier detection</dc:title><dc:creator>Lipunov V.<irid>381295</irid></dc:creator><dc:creator>Balanutsa P.<irid>383572</irid></dc:creator><dc:creator>Budnev N.<irid>21422597</irid></dc:creator><dc:creator>Gress O.<irid>164879139</irid></dc:creator><dc:creator>Sankovich A.<irid>328976859</irid></dc:creator><dc:creator>Vlasenko D.<irid></irid></dc:creator><dc:creator>Tselik Yu<irid>626732954</irid></dc:creator><dc:creator>Kechin Ya<irid>292697687</irid></dc:creator><dc:creator>Gorbovskoy E.<irid>626732667</irid></dc:creator><dc:creator>Kuznetsov A.<irid>626732955</irid></dc:creator><dc:creator>Zhirkov K.<irid>229519942</irid></dc:creator><dc:creator>Tiurina N.<irid>7028309</irid></dc:creator><dc:creator>Chasovnikov A.<irid>225342874</irid></dc:creator><dc:creator>Gorbunov I.<irid>8467568</irid></dc:creator><dc:creator>Zimnukhov D.<irid>70778963</irid></dc:creator><dc:creator>Senik V.<irid>594086483</irid></dc:creator><dc:creator>Topolev V.<irid>226126401</irid></dc:creator><dc:creator>Cheryasov D.<irid>8091165</irid></dc:creator><dc:creator>Sosnovskij A.<irid>2013981</irid></dc:creator><dc:creator>Rebolo R.<irid>29316670</irid></dc:creator><dc:creator>Serra M.<irid>12054093</irid></dc:creator><dc:creator>Buckley D.<irid>39672471</irid></dc:creator><dc:creator>Podesta R.<irid>29490931</irid></dc:creator><dc:creator>Lopez C.<irid>125798344</irid></dc:creator><dc:creator>Podesta F.<irid>162637912</irid></dc:creator><dc:creator>Francile C.<irid>457130604</irid></dc:creator><dc:creator>Tlatov A.<irid>72855056</irid></dc:creator><dc:creator>Dormidontov D.<irid>385208</irid></dc:creator><dc:creator>Gabovich A.<irid>13229447</irid></dc:creator><dc:creator>Yurkov V.<irid>229004397</irid></dc:creator><prism:publicationName>GCN circular</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>34983</prism:volume><prism:startingPage>1</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/626732956/</prism:url><prism:ID>626732956/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-03 23:30:04</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>MASTER Global robotic net (http://observ.pereplet.ru Lipunov et al.,2010,Advances in Astronomy,2010,30L) started (Lipunov et al. GCN 34980) Swift GRB 231111A (Ttrigger=14:17:19UT, Melandri al. GCN 34981, XRTstart=99s after trigger time) 17s after notice time at 14:17:57UT. We detected optical counterpart (Melandri et al. GCN 34981) of GRB 231111A MASTER OT J192045.23+522610.1 from first image at rise stage. We see Smooth Optical Self-similar Emission of this Gamma-Ray Bursts (SOSS-emission, Lipunov et al. 2017, ApJ, 845, id9 https://ui.adsabs.harvard.edu/abs/2017ApJ...845...52L/abstract ) Observations and reduction will be continued.https://ui.adsabs.harvard.edu/abs/2023GCN.34983....1L/abstract</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Swift GRB230818.98: Global MASTER-Net OT detection</dc:title><dc:creator>Lipunov V.<irid>381295</irid></dc:creator><dc:creator>Kornilov V.<irid>385158</irid></dc:creator><dc:creator>Gorbovskoy E.<irid>626732667</irid></dc:creator><dc:creator>Zhirkov K.<irid>229519942</irid></dc:creator><dc:creator>Tyurina N.<irid>7028309</irid></dc:creator><dc:creator>Balanutsa P.<irid>383572</irid></dc:creator><dc:creator>Kuznetsov A.<irid></irid></dc:creator><dc:creator>Vlasenko D.<irid></irid></dc:creator><dc:creator>Antipov G.<irid>421264532</irid></dc:creator><dc:creator>Zimnukhov D.<irid>70778963</irid></dc:creator><dc:creator>Senik V.<irid>594086483</irid></dc:creator><dc:creator>Minkina E.<irid>239481347</irid></dc:creator><dc:creator>Chasovnikov A.<irid>225342874</irid></dc:creator><dc:creator>Topolev V.<irid>226126401</irid></dc:creator><dc:creator>Kuvshinov D.<irid>1356547</irid></dc:creator><dc:creator>Cheryasov D.<irid>8091165</irid></dc:creator><dc:creator>Kechin Ya<irid>292697687</irid></dc:creator><dc:creator>Podesta R.<irid>29490931</irid></dc:creator><dc:creator>Lopez C.<irid>125798344</irid></dc:creator><dc:creator>Podesta F.<irid>162637912</irid></dc:creator><dc:creator>Francile C.<irid>457130604</irid></dc:creator><dc:creator>Rebolo R.<irid>29316670</irid></dc:creator><dc:creator>Serra M.<irid>12054093</irid></dc:creator><dc:creator>Buckley D.<irid>39672471</irid></dc:creator><dc:creator>Gres O.A.<irid>164879139</irid></dc:creator><dc:creator>Budnev N.M.<irid>229004398</irid></dc:creator><dc:creator>Carrasco L.<irid>1738426</irid></dc:creator><dc:creator>Valdes J.R.<irid>1086399</irid></dc:creator><dc:creator>Chavushyan V.<irid>6923707</irid></dc:creator><dc:creator>Patino Alvarez V.M.<irid>626732995</irid></dc:creator><dc:creator>Martinez J.<irid>51907651</irid></dc:creator><dc:creator>Corella A.R.<irid>524010715</irid></dc:creator><dc:creator>Rodriguez L.H.<irid>520171161</irid></dc:creator><dc:creator>Tlatov A.<irid>72855056</irid></dc:creator><dc:creator>Dormidontov D.<irid>385208</irid></dc:creator><dc:creator>Gabovich A.<irid>13229447</irid></dc:creator><dc:creator>Yurkov V.<irid>626732996</irid></dc:creator><prism:publicationName>GCN circular</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>34476</prism:volume><prism:startingPage>1</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/626732997/</prism:url><prism:ID>626732997/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-03 23:32:43</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>MASTER-Tavrida robotic telescope (Global MASTER-Net: http://observ.pereplet.ru, Lipunov et al., 2010, Advances in Astronomy, vol. 2010, 30L) located in Russia (Lomonosov MSU, SAI Crimea astronomical station) was pointed to the GRB230818.98 22 sec after notice time and 37 sec after trigger time at 2023-08-18 23:28:11 UT. On our first (10s exposure) set we found 1 optical transient within Swift error-box (ra=285.879 dec=40.8758 r=0.05) brighter than 16.8. T-Tmid Date Time Expt. Ra Dec Mag ———|———————|——-|————- —-|—————–|——- 42 2023-08-18 23:28:11 10 (19h 03m 33.11s , +40d 53m 48.5s) 15.5 The 5-sigma upper limit has been about 16.8mag The message may be cited.https://ui.adsabs.harvard.edu/abs/2023GCN.34476....1L/abstract</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>LIGO/Virgo/KAGRA S230521k: MASTER new OT discovery</dc:title><dc:creator>Lipunov V.<irid>381295</irid></dc:creator><dc:creator>Kechin Ya<irid>292697687</irid></dc:creator><dc:creator>Buckley D.<irid>39672471</irid></dc:creator><dc:creator>Zhirkov K.<irid>229519942</irid></dc:creator><dc:creator>Kuznetsov A.S.<irid>380889</irid></dc:creator><dc:creator>Balanutsa P.<irid>383572</irid></dc:creator><dc:creator>Chasovnikov A.<irid>225342874</irid></dc:creator><dc:creator>Gress O.<irid>164879139</irid></dc:creator><dc:creator>Tiurina N.V.<irid>395689</irid></dc:creator><dc:creator>Gorbovskoy E.<irid>627267787</irid></dc:creator><dc:creator>Antipov G.<irid>421264532</irid></dc:creator><dc:creator>Vlasenko D.<irid></irid></dc:creator><dc:creator>Senik V.<irid>594086483</irid></dc:creator><dc:creator>Topolev V.<irid>226126401</irid></dc:creator><dc:creator>Tselik Yu<irid>626733042</irid></dc:creator><dc:creator>Wu Siyu<irid>837296</irid></dc:creator><dc:creator>Vladimirov V.<irid>12079111</irid></dc:creator><dc:creator>Cheryasov D.<irid>8091165</irid></dc:creator><dc:creator>Zimnukhov D.<irid>70778963</irid></dc:creator><dc:creator>Pogrosheva T.<irid>2356965</irid></dc:creator><dc:creator>Shumkov V.<irid>162150756</irid></dc:creator><dc:creator>Vetrov K.<irid>626733097</irid></dc:creator><dc:creator>Francile C.<irid>457130604</irid></dc:creator><dc:creator>Podesta F.<irid>162637912</irid></dc:creator><dc:creator>Lopez C.<irid>125798344</irid></dc:creator><dc:creator>Podesta R.<irid>29490931</irid></dc:creator><dc:creator>Rebolo R.<irid>29316670</irid></dc:creator><dc:creator>Serra M.<irid>12054093</irid></dc:creator><dc:creator>Carrasco L.<irid>1738426</irid></dc:creator><dc:creator>Valdes J.R.<irid>1086399</irid></dc:creator><dc:creator>Chavushyan V.<irid>6923707</irid></dc:creator><dc:creator>Patino Alvarez V.M.<irid>626733045</irid></dc:creator><dc:creator>Martinez J.<irid>51907651</irid></dc:creator><dc:creator>Corella A.<irid>524010715</irid></dc:creator><dc:creator>Rodriguez L.H.<irid>520171161</irid></dc:creator><dc:creator>Budnev N.M.<irid>229004398</irid></dc:creator><dc:creator>Ershova O.<irid>523140009</irid></dc:creator><dc:creator>Tlatov A.<irid>72855056</irid></dc:creator><dc:creator>Dormidontov D.<irid>385208</irid></dc:creator><dc:creator>Gabovich A.<irid>163621598</irid></dc:creator><dc:creator>Yurkov V.<irid>2302078</irid></dc:creator><dc:creator>Gulyaev M.A.<irid>519258980</irid></dc:creator><dc:creator>Minkina E.M.<irid>239481347</irid></dc:creator><prism:publicationName>GCN circular</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>33861</prism:volume><prism:startingPage>1</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/626733047/</prism:url><prism:ID>626733047/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-03 23:35:09</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>MASTER OT J071612.28-415537.5 discovery During LVC S230521k https://gcn.gsfc.nasa.gov/notices_l/S230521k.lvc inspection survey (Lipunov et al. GCN 33849) MASTER-SAAO auto-detection system ( Lipunov et al., “MASTER Global Robotic Net”, Advances in Astronomy, 2010, 30L ) discovered OT source at (R.A.,Dec.2000) = 07h 16m 12.28s -41d 55m 37.5s on 2023-05-23.71558 UT. The OT unfiltered magnitude is 18.2m (mlim=19.0). The OT is seen in 4 images. There is no minor planet at this place. We have reference images on 2021-02-16 02:18:16UT with mlim=19.5, on 2014-12-24.97843 UT with unfiltered mlim=19.7m and other, there is no outbursts at automatic light curve, but analysis of archive images will be continued. Spectral observations and deep photometry are required. Observations and analysis will be continued.https://gcn.nasa.gov/circulars/33861</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>GRB 230204B: MASTER early OT detection</dc:title><dc:creator>Lipunov V.<irid>381295</irid></dc:creator><dc:creator>Buckley D.A.H<irid>39672471</irid></dc:creator><dc:creator>Chasovnikov A.<irid>225342874</irid></dc:creator><dc:creator>Kechin Ya<irid>292697687</irid></dc:creator><dc:creator>Kuznetsov A.<irid>626733153</irid></dc:creator><dc:creator>Tiurina N.<irid>395689</irid></dc:creator><dc:creator>Gress O.<irid>164879139</irid></dc:creator><dc:creator>Gorbovskoy E.<irid>626733154</irid></dc:creator><dc:creator>Antipov G.<irid>421264532</irid></dc:creator><dc:creator>Balanutsa P.<irid>383572</irid></dc:creator><dc:creator>Zhirkov K.<irid>229519942</irid></dc:creator><dc:creator>Vlasenko D.<irid></irid></dc:creator><dc:creator>Senik V.<irid>594086483</irid></dc:creator><dc:creator>Kuvshinov D.<irid>1356547</irid></dc:creator><dc:creator>Topolev V.<irid>226126401</irid></dc:creator><dc:creator>Tselik Yu<irid>626733155</irid></dc:creator><dc:creator>Cheryasov D.<irid>8091165</irid></dc:creator><dc:creator>Gorbunov I.<irid>8467568</irid></dc:creator><dc:creator>Francile C.<irid>457130604</irid></dc:creator><dc:creator>Podesta R.<irid>29490931</irid></dc:creator><dc:creator>Podesta F.<irid>162637912</irid></dc:creator><dc:creator>Rebolo R.<irid>29316670</irid></dc:creator><dc:creator>Serra M.<irid>12054093</irid></dc:creator><dc:creator>Carrasco L.<irid>1738426</irid></dc:creator><dc:creator>Valdes J.R.<irid>1086399</irid></dc:creator><dc:creator>Chavushyan V.<irid>6923707</irid></dc:creator><dc:creator>Patino Alvarez V.M.<irid>626733156</irid></dc:creator><dc:creator>Martinez J.<irid>51907651</irid></dc:creator><dc:creator>Corella A.<irid>524010715</irid></dc:creator><dc:creator>Rodriguez L.H.<irid>520171161</irid></dc:creator><dc:creator>Budnev N.M.<irid>21422597</irid></dc:creator><dc:creator>Tlatov A.<irid>72855056</irid></dc:creator><dc:creator>Dormidontov D.<irid>385208</irid></dc:creator><dc:creator>Gabovich A.<irid>13229447</irid></dc:creator><dc:creator>Yurkov V.<irid>26759938</irid></dc:creator><prism:publicationName>GCN circular</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>33301</prism:volume><prism:startingPage>1</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/626733157/</prism:url><prism:ID>626733157/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-03 23:40:13</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>MASTER OT J131034.94-214304.8 early detection of MAXI GRB 230204B optical counterpart (Swain et al. GCN 33269, Smartt et al. GCN 33278, Saccardi et al. GCN 33281, Ror et al. GCN 33284, Siegel et al. GCN 33292, Strausbaugh et al. GCN 33293) MASTER-SAAO robotic telescope (Global MASTER-Net http://observ.pereplet.ru, Lipunov et al., 2010, Advances in Astronomy, v.2010, 30L) located in South African Astronomical Observatory, started inspect of the MAXI GRB230204.91 (trigger 979708795, 13h10m14.88s, -22d02m13.2s, R=1deg, Serino et al. GCN 33265; Kennea et al. GCN 33267, Waratkar et al. GCN 33268, Casentini et al. GCN 33272, Dafcikova et al. GCN 33273, D’Elia et al. GCN 33285, Poolakkil et al. GCN 33288) errorbox 85 sec after notice time (1075 sec after trigger time) at 2023-02-04 22:06:06 UT with upper limit to 19.4m ( unfiltered ) . Real time updated cover map and OT discovered available here: https://master.sai.msu.ru/site/master2/observ.php?id=2196693 The observations began at zenith distance = 63 deg. The sun altitude: -40.5 deg., the distance to Moon (alt=12 deg.) was 89 deg., the Moon phase 0.99). The galactic latitude b = 40 deg., longitude l = 309 deg. MASTER-SAAO auto-detection system ( Lipunov et al., 2010 ) detected OT source at (RA, Dec) = 13h 10m 34.94s -21d 43m 04.8s at 2023-02-04.92090 UT. The OT unfiltered magnitude at first image is 12.9m (mlim=17.6). Automatic light curve decay has pecularity. We have reference image on 2020-04-24.82001 UT with unfiltered mlim=20.6m. We observed this field also in very wide field cameras (MASTER-VWFC). The reduction will be continued.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>GRB 231215C: MASTER OT detection</dc:title><dc:creator>Lipunov V.<irid>381295</irid></dc:creator><dc:creator>Balanutsa P.<irid>383572</irid></dc:creator><dc:creator>Gress O.<irid>164879139</irid></dc:creator><dc:creator>Budnev N.<irid>21422597</irid></dc:creator><dc:creator>Gorbovskoy E.<irid>626732667</irid></dc:creator><dc:creator>Svinkin D.<irid>92404154</irid></dc:creator><dc:creator>Kechin Ya<irid>292697687</irid></dc:creator><dc:creator>Zhirkov K.<irid>229519942</irid></dc:creator><dc:creator>Kuznetsov A.<irid></irid></dc:creator><dc:creator>Vlasenko D.<irid></irid></dc:creator><dc:creator>Tselik Yu<irid>104268003</irid></dc:creator><dc:creator>Tiurina N.<irid>395689</irid></dc:creator><dc:creator>Gorbunov I.<irid>8467568</irid></dc:creator><dc:creator>Vladimirov V.<irid>12079111</irid></dc:creator><dc:creator>Zimnukhov D.<irid>70778963</irid></dc:creator><dc:creator>Senik V.<irid>594086483</irid></dc:creator><dc:creator>Yudin A.<irid>523140190</irid></dc:creator><dc:creator>Chasovnikov A.<irid>225342874</irid></dc:creator><dc:creator>Cheryasov D.<irid>8091165</irid></dc:creator><dc:creator>Sosnovskij A.<irid>2013981</irid></dc:creator><dc:creator>Podesta C.Francile F<irid>162637912</irid></dc:creator><dc:creator>Podesta R.<irid>29490931</irid></dc:creator><dc:creator>Rebolo R.<irid>29316670</irid></dc:creator><dc:creator>Serra M.<irid>12054093</irid></dc:creator><dc:creator>Tlatov A.<irid>72855056</irid></dc:creator><dc:creator>Dormidontov D.<irid>385208</irid></dc:creator><dc:creator>Gabovich A.<irid>9637920</irid></dc:creator><dc:creator>Yurkov V.<irid>2302078</irid></dc:creator><prism:publicationName>GCN circular</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>35347</prism:volume><prism:startingPage>1</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/626732669/</prism:url><prism:ID>626732669/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-03 23:06:25</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>MASTER Global robotic net (http://observ.pereplet.ru Lipunov et al.,2010,Advances in Astronomy,2010,30L) started Swift GRB 231215C ( D’Avanzo et al GCN 35343, Evans et al. GCN35345) at 2023-12-15 10:33:29UT (Lipunov et al. GCN 35346) There is MASTER OT J003857.44+573850 since first image with mOT=16.5 at one of first image, with classical GRB light curve Observations and reduction will be continuedhttps://ui.adsabs.harvard.edu/abs/2023GCN.35347....1L/abstract</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>GRB 230426A: MASTER OT J023135.16-792104.8 optical counterpart discovery</dc:title><dc:creator>Lipunov V.<irid>381295</irid></dc:creator><dc:creator>Buckley D.A.H<irid>39672471</irid></dc:creator><dc:creator>Kechin Ya<irid>292697687</irid></dc:creator><dc:creator>Chasovnikov A.<irid>225342874</irid></dc:creator><dc:creator>Kuznetsov A.<irid>626733095</irid></dc:creator><dc:creator>Tiurina N.<irid>395689</irid></dc:creator><dc:creator>Balanutsa P.<irid>383572</irid></dc:creator><dc:creator>Gress O.<irid>164879139</irid></dc:creator><dc:creator>Gorbovskoy E.<irid>626732667</irid></dc:creator><dc:creator>Antipov G.<irid>421264532</irid></dc:creator><dc:creator>Zhirkov K.<irid>229519942</irid></dc:creator><dc:creator>Vlasenko D.<irid></irid></dc:creator><dc:creator>Senik V.<irid>594086483</irid></dc:creator><dc:creator>Topolev V.<irid>226126401</irid></dc:creator><dc:creator>Tselik Yu<irid>104268003</irid></dc:creator><dc:creator>Wu Siyu<irid>837296</irid></dc:creator><dc:creator>Francile C.<irid>457130604</irid></dc:creator><dc:creator>Podesta F.<irid>162637912</irid></dc:creator><dc:creator>Lopez C.<irid>125798344</irid></dc:creator><dc:creator>Podesta R.<irid>29490931</irid></dc:creator><dc:creator>Rebolo R.<irid>29316670</irid></dc:creator><dc:creator>Serra M.<irid>12054093</irid></dc:creator><dc:creator>Carrasco L.<irid>1738426</irid></dc:creator><dc:creator>Valdes J.R.<irid>1086399</irid></dc:creator><dc:creator>Chavushyan V.<irid>6923707</irid></dc:creator><dc:creator>Patino Alvarez V.M.<irid>74257543</irid></dc:creator><dc:creator>Martinez J.<irid>51907651</irid></dc:creator><dc:creator>Corella A.<irid>524010715</irid></dc:creator><dc:creator>Rodriguez L.H.<irid>520171161</irid></dc:creator><dc:creator>Budnev N.M.<irid>229004398</irid></dc:creator><dc:creator>Ershova O.<irid>523140009</irid></dc:creator><dc:creator>Tlatov A.<irid>72855056</irid></dc:creator><dc:creator>Dormidontov D.<irid>385208</irid></dc:creator><dc:creator>Gabovich A.<irid>9637920</irid></dc:creator><dc:creator>Yurkov V.<irid>2302078</irid></dc:creator><dc:creator>Vetrov K.<irid>626733097</irid></dc:creator><dc:creator>Shumkov V.<irid>1787296</irid></dc:creator><dc:creator>Pogrosheva T.<irid>1336838</irid></dc:creator><prism:publicationName>GCN circular</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>33691</prism:volume><prism:startingPage>1</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/626733098/</prism:url><prism:ID>626733098/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-03 23:38:14</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>MASTER-SAAO robotic telescope (Global MASTER Net http://observ.pereplet.ru,Lipunov et al., 2010, Advances in Astronomy, v.2010, 30L) located in South African Astronomical Observatory started (Lipunov et al. GCN 33685) inspect of the FERMI GRB230426.85 (trigger 704233744, Wood et al. GCN 33689, Ttrigger 20:28:59.97UT) errorbox 4359 sec after notice time (4391 sec after trigger time) at 2023-04-26 21:42:11UT with upper limit up to 19.5m, see our cover map https://master.sai.msu.ru/site/master2/observ.php?id=2212931 MASTER OT J023135.16-792104.8 - optical counterpart of GRB 230426A discovery 2023gwu MASTER-SAAO auto-detection system found optical counterpart of GRB 230426.85 at R.A.,Dec(2000) = 02h 31m 35.16s , -79d 21m 04s.8 with unfiltered m_OT=17.4 at 2023-04-26 21:56:50UT and with optical decay at 10 images https://www.wis-tns.org/object/2023gwu . There is no any sources in VIZIER database, no any objects in MPC at this time and no OT in MASTER database since Dec.2014. We used reference image on 2018-08-18.99148 UT with unfiltered mlim=20.6m. Analysis will be continued. Deep photometry and spectral observations are required. The message may be cited.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>GRB 231129C: MASTER OT detection</dc:title><dc:creator>Antipov G.<irid>421264532</irid></dc:creator><dc:creator>Lipunov V.<irid>381295</irid></dc:creator><dc:creator>Gorbovskoy E.<irid>626732667</irid></dc:creator><dc:creator>Buckley D.<irid>39672471</irid></dc:creator><dc:creator>Svinkin D.<irid>92404154</irid></dc:creator><dc:creator>Kechin Ya<irid>292697687</irid></dc:creator><dc:creator>Zhirkov K.<irid>229519942</irid></dc:creator><dc:creator>Kuznetsov A.<irid></irid></dc:creator><dc:creator>Vlasenko D.<irid></irid></dc:creator><dc:creator>Balanutsa P.<irid>383572</irid></dc:creator><dc:creator>Tselik Yu<irid>104268003</irid></dc:creator><dc:creator>Tiurina N.<irid>395689</irid></dc:creator><dc:creator>Gorbunov I.<irid>8467568</irid></dc:creator><dc:creator>Vladimirov V.<irid>12079111</irid></dc:creator><dc:creator>Zimnukhov D.<irid>70778963</irid></dc:creator><dc:creator>Senik V.<irid>594086483</irid></dc:creator><dc:creator>Yudin A.<irid>523140190</irid></dc:creator><dc:creator>Chasovnikov A.<irid>225342874</irid></dc:creator><dc:creator>Cheryasov D.<irid>8091165</irid></dc:creator><dc:creator>Sosnovskij A.<irid>2013981</irid></dc:creator><dc:creator>Gres O.A.<irid>164879139</irid></dc:creator><dc:creator>Budnev N.M.<irid>21422597</irid></dc:creator><dc:creator>Podesta C.Francile F<irid>162637912</irid></dc:creator><dc:creator>Podesta R.<irid>29490931</irid></dc:creator><dc:creator>Rebolo R.<irid>29316670</irid></dc:creator><dc:creator>Serra M.<irid>12054093</irid></dc:creator><dc:creator>Tlatov A.<irid>72855056</irid></dc:creator><dc:creator>Dormidontov D.<irid>385208</irid></dc:creator><dc:creator>Gabovich A.<irid>13229447</irid></dc:creator><dc:creator>Yurkov V.<irid>5124365</irid></dc:creator><prism:publicationName>GCN circular</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>35240</prism:volume><prism:startingPage>1</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/626732823/</prism:url><prism:ID>626732823/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-03 23:12:50</created> <attachments><url>https://istina.msu.ru/download/627567641/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>MASTER Global robotic net (http://observ.pereplet.ru Lipunov et al.,2010,Advances in Astronomy,2010,30L) started GECAM-B (Ttrigger=2023-11-29 19:10:18.2, Tnotice_socket=2023-11-29 19:11:45.56 Zheng et al. GCN 35231) and Fermi very bright GRB 231129C (Ttrigger=2023-11-29 19:10:18.11, Tnotice_socket=2023-11-29 19:19:40.72 Sharma et al. GCN 35227, GCN 35238, also MAXI-GSC (GCN 35223), CALET (GCN 35228), AstroSat (GCN 35230)) 55 sec after notice time and 90 sec after trigger time at 2023-11-29 19:11:48 UT (Lipunov et al. GCN 35216) by MASTER-SAAO. There is OT source at R.A.,Dec(2000)=00:44:37.97 -81:59:48.75 +-4” with m_OTåisebox-0.5ex~17.6 at maximum (unfiltered) at first images with decay inside Swift XRT error- box (Evans et al. GCN 35225, Gropp et al. GCN 35234) Reduction will be continued.https://ui.adsabs.harvard.edu/abs/2023GCN.35240....1A/abstract</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Swift GRB231210.90: Global MASTER-Net OT detection</dc:title><dc:creator>Buckley D.<irid>39672471</irid></dc:creator><dc:creator>Lipunov V.<irid>381295</irid></dc:creator><dc:creator>Kornilov V.<irid>385158</irid></dc:creator><dc:creator>Gorbovskoy E.<irid>626732667</irid></dc:creator><dc:creator>Zhirkov K.<irid>229519942</irid></dc:creator><dc:creator>Tyurina N.<irid>395689</irid></dc:creator><dc:creator>Balanutsa P.<irid>383572</irid></dc:creator><dc:creator>Kuznetsov A.<irid>626732731</irid></dc:creator><dc:creator>Topolev V.<irid>226126401</irid></dc:creator><dc:creator>Kuvshinov D.<irid>395692</irid></dc:creator><dc:creator>Cheryasov D.<irid>8091165</irid></dc:creator><dc:creator>Kechni Ya<irid>626732732</irid></dc:creator><dc:creator>Tselik Yu<irid>104268003</irid></dc:creator><dc:creator>Sosnovskij A.<irid>2013981</irid></dc:creator><dc:creator>Podesta R.<irid>29490931</irid></dc:creator><dc:creator>Lopez C.<irid>125798344</irid></dc:creator><dc:creator>Podesta F.<irid>162637912</irid></dc:creator><dc:creator>Francile C.<irid>457130604</irid></dc:creator><dc:creator>Rebolo R.<irid>29316670</irid></dc:creator><dc:creator>Serra M.<irid>12054093</irid></dc:creator><dc:creator>Gress O.A.<irid>164879139</irid></dc:creator><dc:creator>Budnev N.M.<irid>21422597</irid></dc:creator><dc:creator>Ershova O.<irid>523140009</irid></dc:creator><dc:creator>Carrasco L.<irid>1738426</irid></dc:creator><dc:creator>Valdes J.R.<irid>1086399</irid></dc:creator><dc:creator>Chavushyan V.<irid>6923707</irid></dc:creator><dc:creator>Patino Alvarez V.M.<irid>626732733</irid></dc:creator><dc:creator>Martinez J.<irid>51907651</irid></dc:creator><dc:creator>Corella A.R.<irid>524010715</irid></dc:creator><dc:creator>Rodriguez L.H.<irid>520171161</irid></dc:creator><dc:creator>Tlatov A.<irid>72855056</irid></dc:creator><dc:creator>Dormidontov D.<irid>385208</irid></dc:creator><dc:creator>Yurkov V.<irid>1787293</irid></dc:creator><dc:creator>Gabovich A.<irid>163621598</irid></dc:creator><prism:publicationName>GCN circular</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>35313</prism:volume><prism:startingPage>1</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/626732734/</prism:url><prism:ID>626732734/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-03 23:09:36</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>MASTER-SAAO robotic telescope (Global MASTER-Net: http://observ.pereplet.ru, Lipunov et al., 2010, Advances in Astronomy, vol. 2010, 30L) located in South Africa (South African Astronomical Observatory) was pointed to the GRB231210.90 92 sec after notice time and 124 sec after trigger time at 2023-12-10 21:31:08 UT. On our first (10s exposure) set we found 1 optical transient within Swift error-box (ra=95.7708 dec=-48.3583 r=0.05) brighter than 16.9. T-Tmid Date Time Expt. Ra Dec Mag ———|———————|——-|————- —-|—————–|——- 129 2023-12-10 21:31:08 10 (06h 23m 11.01s , -48d 22m 20.5s) 16.3 The 5-sigma upper limit has been about 16.9mag The message may be cited.https://ui.adsabs.harvard.edu/abs/2023GCN.35313....1B/abstract</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>GRB 231118A: MASTER OT observation</dc:title><dc:creator>Lipunov V.<irid>381295</irid></dc:creator><dc:creator>Buckley D.<irid>39672471</irid></dc:creator><dc:creator>Kuznetsov A.<irid>626732888</irid></dc:creator><dc:creator>Vlasenko D.<irid>626732889</irid></dc:creator><dc:creator>Balanutsa P.<irid>383572</irid></dc:creator><dc:creator>Zhirkov K.<irid>229519942</irid></dc:creator><dc:creator>Gorbovskoy E.<irid>626732667</irid></dc:creator><dc:creator>Kechin Ya<irid>292697687</irid></dc:creator><dc:creator>Tselik Yu<irid>104268003</irid></dc:creator><dc:creator>Tiurina N.<irid>395689</irid></dc:creator><dc:creator>Gorbunov I.<irid>8467568</irid></dc:creator><dc:creator>Vladimirov V.<irid>12079111</irid></dc:creator><dc:creator>Zimnukhov D.<irid>70778963</irid></dc:creator><dc:creator>Senik V.<irid>594086483</irid></dc:creator><dc:creator>Topolev V.<irid>226126401</irid></dc:creator><dc:creator>Yudin A.<irid>523140190</irid></dc:creator><dc:creator>Chasovnikov A.<irid>225342874</irid></dc:creator><dc:creator>Cheryasov D.<irid>8091165</irid></dc:creator><dc:creator>Sosnovskij A.<irid>2013981</irid></dc:creator><dc:creator>Pozdnyakov A.<irid>20939021</irid></dc:creator><dc:creator>Gulyaev M.<irid>2664432</irid></dc:creator><dc:creator>Gres O.A.<irid>164879139</irid></dc:creator><dc:creator>Budnev N.M.<irid>21422597</irid></dc:creator><dc:creator>Podesta R.<irid>29490931</irid></dc:creator><dc:creator>Lopez C.<irid>125798344</irid></dc:creator><dc:creator>Podesta F.<irid>162637912</irid></dc:creator><dc:creator>Francile C.<irid>457130604</irid></dc:creator><dc:creator>Rebolo R.<irid>29316670</irid></dc:creator><dc:creator>Serra M.<irid>12054093</irid></dc:creator><dc:creator>Tlatov A.<irid>72855056</irid></dc:creator><dc:creator>Dormidontov D.<irid>385208</irid></dc:creator><dc:creator>Gabovich A.<irid>11142088</irid></dc:creator><dc:creator>Yurkov V.<irid>626732890</irid></dc:creator><prism:publicationName>GCN circular</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>35109</prism:volume><prism:startingPage>1</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/626732891/</prism:url><prism:ID>626732891/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-03 23:15:57</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>MASTER Global robotic net (MASTER-Net:http://observ.pereplet.ru Lipunov etal.,2010,Advances in Astronomy,2010,30L) started Fermi (GCN 35100) and Swift (Evans et al. GCN 35101, GCN 35104, GCN 35106) GRB 231118A error box observation at 2023-11-18 20:19:50 UT by MASTER-SAAO (Lipunov et al. GCN 35107). There is optical counterpart MASTER OT J001919.45-480224.7 with m_OT=19.2m+-0.2m at 2023-11-18 20:26:40 and next 5 expositions (automatic, unfiltered, mlim=19.5), at Skynet position (discovered by Dutton et al. GCN 35103, GCN 35108) Observations started at 70deg.altitude. Observation and reduction will be continued.https://ui.adsabs.harvard.edu/abs/2023GCN.35109....1L/abstract</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Фотоиндуцированная динамика спиновых центров в нанотрубках диоксида титана, модифицированных углеродом</dc:title><dc:creator>Кытина Е.В.<irid>334085084</irid></dc:creator><dc:creator>Савчук Т.П.<irid>10310441</irid></dc:creator><dc:creator>Гаврилин И.М.<irid></irid></dc:creator><dc:creator>Константинова Е.А.<irid>415137</irid></dc:creator><prism:publicationName>Журнал неорганической химии</prism:publicationName><prism:doi>10.31857/S0044457X22601201</prism:doi> <dc:publisher>ФГБУ "Издательство "Наука"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>68</prism:volume><prism:number>3</prism:number><prism:startingPage>1</prism:startingPage><prism:endingPage>7</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/501402624/</prism:url><prism:ID>501402624/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2022-10-11 13:35:28</created> <attachments><url>https://istina.msu.ru/download/588599547/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Синтезированы массивы нанотрубок диоксида титана (TiO2) с различным химическим составом, изучены их структурные свойства и определены характеристики спиновых центров (дефектов). Обнаружено, что все образцы имеют в своем составе углерод. Установлено, что основным типом спиновых центров в нанотрубках TiO2 являются оборванные связи углерода, концентрация которых коррелирует с содержанием углерода в полученных структурах. Под действием освещения происходит обратимый рост концентрации дефектов, обусловленный их фотоиндуцированными реакциями перезарядки в процессе примесного поглощения. Указанный процесс сопровождается увеличением концентрации фотовозбужденных электронов в зоне проводимости. Оригинальность и новизна работы определяются разработкой способа контроля плотности дефектов и, соответственно, концентрации фотоиндуцированных электронов путем термической обработки образцов в различных условиях. Полученные результаты открывают новые возможности для разработки функционирующих в видимом диапазоне спектра фотокатализаторов на основе нанотрубок диоксида титана с управляемой концентрацией электронов в зоне проводимости.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Поверхностная функционализация квазидвумерного MoS2 в азотной и кислородной плазме</dc:title><dc:creator>Мележенко Д.Е.<irid>56011555</irid></dc:creator><dc:creator>Лопаев Д.В.<irid>719408</irid></dc:creator><dc:creator>Манкелевич Ю.А.<irid>438122</irid></dc:creator><dc:creator>Хлебников С.А.<irid>587999688</irid></dc:creator><dc:creator>Соловых А.А.<irid>417457219</irid></dc:creator><dc:creator>Новиков Л.С.<irid>376783</irid></dc:creator><dc:creator>Воронина Е.Н.<irid>277965</irid></dc:creator><prism:publicationName>Физика и химия обработки материалов</prism:publicationName><prism:doi>10.30791/0015-3214-2023-5-18-28</prism:doi> <dc:publisher>Интерконтакт Наука</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>5</prism:number><prism:startingPage>18</prism:startingPage><prism:endingPage>28</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/623870824/</prism:url><prism:ID>623870824/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-24 11:36:19</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Нелинейный отклик разреженных газов на ультрафиолетовый фемтосекундный импульс</dc:title><dc:creator>Врублевская Н.Р.<irid>412384647</irid></dc:creator><dc:creator>Шипило Д.Е.<irid>12001711</irid></dc:creator><dc:creator>Николаева И.А.<irid>56757026</irid></dc:creator><dc:creator>Панов Н.А.<irid>387487</irid></dc:creator><dc:creator>Косарева О.Г.<irid>394701</irid></dc:creator><prism:publicationName>Письма в "Журнал экспериментальной и теоретической физики"</prism:publicationName><prism:doi>10.1134/S0021364023600301</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>117</prism:volume><prism:startingPage>400</prism:startingPage><prism:endingPage>405</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/540541838/</prism:url><prism:ID>540541838/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-03-09 19:03:15</created> <attachments><url>https://istina.msu.ru/download/562125321/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Аномальная пикосекундная динамика оптического пропускания гибридной метаповерхности Au-Bi:YIG. Письма в</dc:title><dc:creator>Кирьянов М.А.<irid>86017542</irid></dc:creator><dc:creator>Останин Г.С.<irid>370003264</irid></dc:creator><dc:creator>Долгова Т.В.<irid>578371</irid></dc:creator><dc:creator>Иноуе М.<irid>2052947</irid></dc:creator><dc:creator>Федянин А.А.<irid>238541</irid></dc:creator><prism:publicationName>Письма в "Журнал экспериментальной и теоретической физики"</prism:publicationName><prism:doi>10.31857/S1234567823030047</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>117</prism:volume><prism:number>3</prism:number><prism:startingPage>201</prism:startingPage><prism:endingPage>206</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/535018048/</prism:url><prism:ID>535018048/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-02-10 20:54:06</created> <attachments><url>https://istina.msu.ru/download/564232877/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Методом фемтосекундной спектроскопии с временным разрешением “зонд-накачка” изучена суб- ипикосекундная динамика оптического отклика металл-диэлектрической метаповерхности на основе золотых наносфер, помещенных в слой висмут-замещенного железо-иттриевого граната. Показано, чтоплазмонные моды такой метаповерхности демонстрируют динамику, характерную для объемного золота,в то время как для поляритонной моды наблюдается замедление релаксации на несколько пикосекунд.Отличие связано с детектированием пучком зонда различных процессов на длинах волн плазмонной иполяритонной мод.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Генерация третьей гармоники терагерцового излучения в топологических изоляторах на основе халькогенидов висмута и сурьмы</dc:title><dc:creator>Кузнецов К.А.<irid>710497</irid></dc:creator><dc:creator>Кузнецов П.И.<irid>8913210</irid></dc:creator><dc:creator>Фролов А.Д.<irid>180375380</irid></dc:creator><dc:creator>Коновалов А.М.<irid>454897595</irid></dc:creator><dc:creator>Ковалева П.М.<irid>505485136</irid></dc:creator><dc:creator>Китаева Г.Х.<irid>431552</irid></dc:creator><prism:publicationName>Письма в "Журнал экспериментальной и теоретической физики"</prism:publicationName><prism:doi>10.31857/S1234567823180039</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>118</prism:volume><prism:number>6</prism:number><prism:startingPage>397</prism:startingPage><prism:endingPage>402</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/588580581/</prism:url><prism:ID>588580581/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-28 11:19:47</created> <attachments><url>https://istina.msu.ru/download/592864454/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Экспериментально исследована генерация третьей гармоники терагерцового излучения в топологических изоляторах на основе халькогенидов висмута и сурьмы. Обнаружено, что эффективность преобразования в третью гармонику обратно пропорциональна энергии Ферми электронов, при этом лучшим из исследованных материалов по эффективности преобразования является теллурид сурьмы.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Эффект “преломления” магнитных доменных границ на электрических неоднородностях</dc:title><dc:creator>Подклетнова A.A.<irid>592869689</irid></dc:creator><dc:creator>Колюшенков Mаксим А.<irid>552322143</irid></dc:creator><dc:creator>Мясников Н.В.<irid>348362736</irid></dc:creator><dc:creator>Николаева Е.П.<irid>472013</irid></dc:creator><dc:creator>Каминский А.С.<irid>201207762</irid></dc:creator><dc:creator>Николаев Алексей Владимирович<irid>472131</irid></dc:creator><dc:creator>Пятаков А.П.<irid>405848</irid></dc:creator><prism:publicationName>Письма в "Журнал экспериментальной и теоретической физики"</prism:publicationName><prism:doi>10.31857/S1234567823160061</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>118</prism:volume><prism:number>4</prism:number><prism:startingPage>259</prism:startingPage><prism:endingPage>262</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/585236534/</prism:url><prism:ID>585236534/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-11 12:01:31</created> <attachments><url>https://istina.msu.ru/download/585236542/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Рассмотрена разновидность магнитоэлектрического эффекта, проявляющаяся как “преломление” доменных границ в месте локализации электрода, напыленного на поверхность пленки феррита граната.Относительный “показатель преломления” зависит от приложенного к электроду электрического напряжения и меняется в пределах от 0.6 до 1.2. В качестве механизма эффекта предложено электроиндуцированное изменение поверхностной энергии доменной границы за счет неоднородного магнитоэлектрического взаимодействия.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Высокочастотный сдвиг и расширение спектра генерации ТГц излучения до 10 ТГц в процессе оптического выпрямления мощного фемтосекундного малопериодного излучения накачки ближнего ИК диапазона в кристалле BNA</dc:title><dc:creator>Румянцев Б.В.<irid>142395702</irid></dc:creator><dc:creator>Жидовцев Н.А.<irid>146314360</irid></dc:creator><dc:creator>Пушкин А.В.<irid>17881827</irid></dc:creator><dc:creator>Лобушкин Е.А.<irid>573937187</irid></dc:creator><dc:creator>Шулындин П.А.<irid>593778888</irid></dc:creator><dc:creator>Сулейманова Д.З.<irid>401742460</irid></dc:creator><dc:creator>Савельев-Трофимов А.Б.<irid>386630</irid></dc:creator><dc:creator>Потёмкин Ф.В.<irid>387194</irid></dc:creator><prism:publicationName>Письма в "Журнал экспериментальной и теоретической физики"</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>118</prism:volume><prism:number>11</prism:number><prism:url>http://istina.msu.ru/publications/article/608409264/</prism:url><prism:ID>608409264/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-06 02:47:09</created> <attachments><url>https://istina.msu.ru/download/611778736/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Управление динамическими режимами наноразмерного сверхпроводящего интерферометра</dc:title><dc:creator>Терещенко И.А.<irid>417749316</irid></dc:creator><dc:creator>Хренов М.М.<irid>482333292</irid></dc:creator><dc:creator>Кленов Н.В.<irid>499407</irid></dc:creator><dc:creator>Тихонова О.В.<irid>396283</irid></dc:creator><prism:publicationName>Письма в "Журнал экспериментальной и теоретической физики"</prism:publicationName><prism:doi>10.31857/S1234567824030108</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>119</prism:volume><prism:number>2</prism:number><prism:startingPage>219</prism:startingPage><prism:endingPage>227</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/624432147/</prism:url><prism:ID>624432147/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-26 12:36:21</created> <attachments><url>https://istina.msu.ru/download/624432180/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Найдено аналитическое решение, описывающее динамические процессы в наноразмерном сверхпроводящем интерферометре с пренебрежимо малыми индуктивностями, включенном в высокодобротный резонатор. Проанализировано влияние нелинейности в системе, а также воздействие внешней параметрической накачки. В широком диапазоне проведен скрининг обнаруженных динамических режимов исследуемой наноструктуры в резонаторе и получены их положения на плоскости параметров. Продемонстрировано существенное влияние фазовых эффектов на эволюцию системы и выявлены фазовые соотношения, позволяющие управлять интенсивностью сигнала на выходе. Обнаруженные эффекты открывают новые возможности для разработки и тестирования базовых элементов современных вычислительных квантовых систем.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Особенности фторирования поверхности золота Au(111) с использованием молекул фторфуллеренов</dc:title><dc:creator>Орешкин С.И.<irid>566255</irid></dc:creator><dc:creator>Петухов М.Н.<irid>161223377</irid></dc:creator><dc:creator>Музыченко Д.А.<irid>589118</irid></dc:creator><dc:creator>Панов В.И.<irid>384662</irid></dc:creator><dc:creator>Суров В.О.<irid>534747228</irid></dc:creator><dc:creator>Самородский А.В.<irid>365089164</irid></dc:creator><dc:creator>Орешкин А.И.<irid>566730</irid></dc:creator><prism:publicationName>Письма в "Журнал экспериментальной и теоретической физики"</prism:publicationName><prism:doi>10.31857/S1234567824030091</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>119</prism:volume><prism:number>3</prism:number><prism:startingPage>212</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/628511111/</prism:url><prism:ID>628511111/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-09 14:23:32</created> <attachments><url>https://istina.msu.ru/download/630492613/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Продемонстрирована возможность использования молекул фторфуллерена C60F48 в качестве источника фтора в реакциях с участием золота Au(111). Методами сверхвысоковакуумной сканирующей туннельной микроскопии и рентгеновской фотоэлектронной спектроскопии показано, что молекулы C60F48 теряют часть атомов фтора с течением времени, образуя молекулы со стехиометрическим составом, близким к конфигурации фторфуллерена C60F36, что подтверждено измерениями рентгеновской фотоэлектронной спектроскопии. Взаимодействие фтора с поверхностью Au(111) происходит только под островками, сформированными молекулами фторфуллерена, потерявшими часть атомов фтора. Было показано, что молекула С60F18 не реагирует с поверхностью Au(111). При субмонослойном покрытии поверхности золота фторфуллереном С60F18, "herringbone" (22\times \sqrt{3}) реконструкция, характерная для чистой поверхности Au(111), остается неизменной как в области, свободной от сформировавшихся островков фторфуллерена, так и под ними, а молекулы С60F18 сохраняют свою начальную конфигурацию с течением времени.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Структура внутреннего переходного слоя в задаче реакция–диффузия в случае сбалансированной реакции со слабым разрывом</dc:title><dc:creator>Никулин Е.И.<irid>17026149</irid></dc:creator><dc:creator>Волков В.Т.<irid>851789</irid></dc:creator><dc:creator>Карманов Д.А.<irid>402753013</irid></dc:creator><prism:publicationName>Дифференциальные уравнения</prism:publicationName><prism:doi>10.31857/0376064124010060</prism:doi> <dc:publisher>ФГБУ "Издательство "Наука"</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>60</prism:volume><prism:number>1</prism:number><prism:startingPage>64</prism:startingPage><prism:endingPage>75</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/631310133/</prism:url><prism:ID>631310133/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-19 07:10:52</created> <attachments><url>https://istina.msu.ru/download/631310164/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Для сингулярно возмущённого уравнения типа реакция–диффузия исследована структура внутреннего переходного слоя в случае сбалансированной реакции со слабым разрывом. Доказано существование решений с внутренним переходным слоем (контрастных структур), исследован вопрос об их устойчивости, получены асимптотические приближения решений указанного типа. Показано, что в случае баланса реакции наличие даже слабого (асимптотически малого) разрыва реакции может приводить к образованию контрастных структур конечного размера, как устойчивых, так и неустойчивых.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Гидрохимические и микробиологические процессы, сопровождающие гибридное хранение водорода и метана в водоносных горизонтах</dc:title><dc:creator>Абукова Л.А.<irid>24290511</irid></dc:creator><dc:creator>Сафарова Е.А.<irid>145555286</irid></dc:creator><dc:creator>Филиппова Д.С.<irid>319299355</irid></dc:creator><dc:creator>Поднек В.Э.<irid>213069236</irid></dc:creator><dc:creator>Кияченко Ю.Ф.<irid>213069234</irid></dc:creator><dc:creator>Юдин И.К.<irid></irid></dc:creator><dc:creator>Исаева Г.Ю.<irid>213075096</irid></dc:creator><dc:creator>Мельник А.Д.<irid>352483687</irid></dc:creator><dc:creator>Бевзо М.О.<irid>297641474</irid></dc:creator><prism:publicationName>Актуальные проблемы нефти и газа</prism:publicationName><prism:doi>10.29222/ipng.2078-5712.2023-42.art14</prism:doi> <dc:publisher>Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Российской академии наук</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>3</prism:volume><prism:number>42</prism:number><prism:startingPage>221</prism:startingPage><prism:endingPage>234</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/621377812/</prism:url><prism:ID>621377812/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-22 15:22:01</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Особенности взаимодействия атомов инертных газов низкой энергии с метильными группами на поверхности low k диэлектриков</dc:title><dc:creator>Соловых А.А.<irid>417457219</irid></dc:creator><dc:creator>Сычева А.А.<irid>9409381</irid></dc:creator><dc:creator>Воронина Е.Н.<irid>277965</irid></dc:creator><prism:publicationName>Поверхность. Рентгеновские, синхротронные и нейтронные исследования</prism:publicationName><prism:doi>10.1134/S1027451023010391</prism:doi> <dc:publisher>ФГБУ "Издательство "Наука"</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>2</prism:number><prism:startingPage>63</prism:startingPage><prism:endingPage>70</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/556348108/</prism:url><prism:ID>556348108/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-10 21:37:56</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Hybrid Approach for Multiscale and Multimodal Time-Resolved Diagnosis of Ultrafast Processes in Materials via Tailored Synchronization of Laser and X-ray Sources at MHz Repetition Rates</dc:title><dc:creator>Marchenkov Nikita<irid>504329074</irid></dc:creator><dc:creator>Mareev Evgenii<irid>12107838</irid></dc:creator><dc:creator>Kulikov Anton<irid>39062480</irid></dc:creator><dc:creator>Pilyak Fedor<irid>60525004</irid></dc:creator><dc:creator>Ibragimov Eduard<irid>281886411</irid></dc:creator><dc:creator>Pisarevskii Yuri<irid>1089814</irid></dc:creator><dc:creator>Potemkin Fedor<irid>387194</irid></dc:creator><prism:publicationName>Optics (MDPI)</prism:publicationName><prism:doi>10.3390/opt5010001</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>5</prism:volume><prism:number>1</prism:number><prism:startingPage>1</prism:startingPage><prism:endingPage>10</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/624441349/</prism:url><prism:ID>624441349/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-01-26 19:29:08</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The synchronization of laser and X-ray sources is essential for time-resolved measurements in the study of ultrafast processes, including photo-induced piezo-effects, shock wave generation, and phase transitions. On the one hand, optical diagnostics (by synchronization of two laser sources) provides information about changes in vibration frequencies, shock wave dynamics, and linear and nonlinear refractive index behavior. On the other hand, optical pump–X-ray probe diagnostics provide an opportunity to directly reveal lattice dynamics. To integrate two approaches into a unified whole, one needs to create a robust method for the synchronization of two systems with different repetition rates up to the MHz range. In this paper, we propose a universal approach utilizing a field-programmable gate array (FPGA) to achieve precise synchronization between different MHz sources such as various lasers and synchrotron X-ray sources. This synchronization method offers numerous advantages, such as high flexibility, fast response, and low jitter. Experimental results demonstrate the successful synchronization of two different MHz systems with a temporal resolution of 250 ps. This enables ultrafast measurements with a sub-nanosecond resolution, facilitating the uncovering of complex dynamics in ultrafast processes.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Влияние условий синтеза на структурные, оптические и электрофизические свойства нанокомпозитов TiO2/CuxO</dc:title><dc:creator>Мартышов М.Н.<irid>587285</irid></dc:creator><dc:creator>Павликов А.В.<irid>1323642</irid></dc:creator><dc:creator>Кытина Е.В.<irid>334085084</irid></dc:creator><dc:creator>Пинчук О.В.<irid>528726389</irid></dc:creator><dc:creator>Савчук Т.П.<irid></irid></dc:creator><dc:creator>Константинова Е.А.<irid>415137</irid></dc:creator><dc:creator>Зайцев В.Б.<irid>1346222</irid></dc:creator><dc:creator>Кашкаров П.К.<irid>384659</irid></dc:creator><prism:publicationName>Журнал технической физики</prism:publicationName><prism:doi>10.21883/JTF.2023.02.54500.221-22n</prism:doi> <dc:publisher>Наука</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>93</prism:volume><prism:number>2</prism:number><prism:startingPage>249</prism:startingPage><prism:endingPage>255</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/528726394/</prism:url><prism:ID>528726394/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-01-20 16:06:19</created> <attachments><url>https://istina.msu.ru/download/588599508/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Infrared surveys to search for high proper motion stars</dc:title><dc:creator>Malik E.D.<irid>575262636</irid></dc:creator><dc:creator>Malkov O.Yu<irid>9571584</irid></dc:creator><prism:publicationName>Communications of the Byurakan Astrophysical Observatory</prism:publicationName><prism:doi>10.52526/25792776-23.70.2-297</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>70</prism:volume><prism:startingPage>297</prism:startingPage><prism:endingPage>301</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/630777184/</prism:url><prism:ID>630777184/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-17 20:32:38</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>There are restrictions on the nature and characteristics of nearby brown dwarfs (including hypothetical component of the Sun), imposed by the current results of the work of the Gaia space observatory. In particular, even close brown dwarfs of spectral type Y3 and colder will go unnoticed by the Gaia observatory, although they may well be already included in infrared survey catalogues. Here we present information on modern infrared surveys, which can be used for a search for such objects.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Электронная публикация</category><dc:title>Электроиндуцированный магнитомеханический эффект</dc:title><dc:creator>Колюшенков М.А.<irid>552322143</irid></dc:creator><dc:creator>Каминский А.С.<irid>201207762</irid></dc:creator><dc:creator>Пятаков А.П.<irid>405848</irid></dc:creator><prism:publicationName>Ученые записки физического факультета Московского Университета</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>4</prism:number><prism:url>http://istina.msu.ru/publications/article/615053785/</prism:url><prism:ID>615053785/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-27 23:44:30</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Развитие нанотехнологий привело к появлению наноэлектромеханических устройств, в которых механические перемещения вызываются и детектируются электрическим способом. Для многих антиферромагнетиков характерен магнитоэлектрический эффект, поэтому представляется интересным исследовать, насколько выражены магнитомеханические эффекты в магнитоэлектрических пленках, микро и нано-частицах. В данной работе исследуется возможность существования электроиндуцированного магнитомеханического эффекта в антиферромагнетиках, производится его оценка для образцов различной геометрии, а также рассматриваются методы регистрации и усиления эффекта, в том числе детектирование резонансного эффекта с использованием зондового микроскопа.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Моделирование установки для исследования углерода в почве</dc:title><dc:creator>Андреев А.В.<irid>517623455</irid></dc:creator><dc:creator>Федоров Н.А.<irid>18580682</irid></dc:creator><prism:publicationName>Ученые записки физического факультета Московского Университета</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>3</prism:number><prism:url>http://istina.msu.ru/publications/article/556346942/</prism:url><prism:ID>556346942/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-10 19:35:11</created> <attachments><url>https://istina.msu.ru/download/564233606/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В работе представлены результаты моделирования установки для нейтрон-гамма анализа почв имеющих различную концентрацию углерода. Моделирование проведено с помощью пакета программ GEANT4. Определена минимальная достоверно обнаруживаемая концентрация углерода. Обсуждается возможность практического применения рассмотренной конфигурации установки для исследования почв.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Решение стационарной задачи распространения ГКЛ с анизотропным тензором диффузии</dc:title><dc:creator>Борисов В.Д.<irid>415880012</irid></dc:creator><dc:creator>Юровский В.О.<irid>337973005</irid></dc:creator><dc:creator>Кудряшов И.А.<irid>864241</irid></dc:creator><prism:publicationName>Ученые записки физического факультета Московского Университета</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>4</prism:number><prism:url>http://istina.msu.ru/publications/article/597864123/</prism:url><prism:ID>597864123/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-28 21:52:52</created> <attachments><url>https://istina.msu.ru/download/597864129/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Статья посвящена решению обратной задачи распространения галактических космических лучей (ГКЛ) от близкого источника (сверхновой) до наблюдателя посредством построения моделитранспорта космических лучей c анизотропным тензором диффузии. Рассмотрена модель вкладаточечного источника в фоновый спектр космических лучей, по лучшему фиту для X² проведенааппроксимация наблюдаемых спектров протонов по данным NUCLEON, CALET и DAMPE. Пооцененным расстояниям представлена возможная интерпретация колена КЛ (космических лучей)в области 10 ТэВ. Сделано предположение о возможных кандидатах, вызывающих изменение наблюдаемого спектра.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Влияние характеристик растворителя на оптические свойства углеродных точек</dc:title><dc:creator>Корепанова А.А.<irid>536328506</irid></dc:creator><prism:publicationName>Ученые записки физического факультета Московского Университета</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>4</prism:volume><prism:url>http://istina.msu.ru/publications/article/589200734/</prism:url><prism:ID>589200734/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-30 15:12:32</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Исследованы зависимости фотолюминесценции двух видов углеродных точек, синтезированных гидротермальным методом и методом Хаммерса, от характеристик различных растворителей. В результате анализа полученных спектров фотолюминесценции суспензий обоих видов углеродных точек во всех использованных растворителях было выявлено значительное влияние кислотности, основности и относительной полярности растворителя на интенсивность и стоксов сдвиг фотолюминесценции углеродных точек. Полученные результаты объясняются процессами изменения химических свойств углеродных точек при взаимодействии со средами, обладающими различающимися физико-химическими характеристиками.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Калибровка матрицы кремниевых фотоумножителей камеры прототипа малого широкоугольного телескопа SIT</dc:title><dc:creator>Аминева А.А.<irid>415877713</irid></dc:creator><dc:creator>Пантюхин А.В.<irid>415878029</irid></dc:creator><dc:creator>Подгрудков Д.А.<irid>350224240</irid></dc:creator><prism:publicationName>Ученые записки физического факультета Московского Университета</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>2023</prism:volume><prism:number>4</prism:number><prism:url>http://istina.msu.ru/publications/article/595570195/</prism:url><prism:ID>595570195/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-20 19:20:50</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Прототип широкоугольного черенковского телескопа (Small Imaging Telescope, SIT) входит в состав астрофизического комплекса TAIGA, расположенного в Тункинской долине (республика Бурятия, Россия), в 50 км от озера Байкал. Особенностью прототипа является использование в качестве чувствительных элементов кремниевых фотоумножителей (КФУ). В статье приведены результаты калибровки камеры прототипа в контексте поиска зависимости "число фотоэлектронов — показания АЦП" при разных температурах и значениях напряжения для индивидуальных КФУ. Калибровка произведена на основе данных, полученных телескопом.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Развитие библиотеки TalysLib</dc:title><dc:creator>Пампушик Г.В.<irid>491540423</irid></dc:creator><dc:creator>Федоров Н.А.<irid>18580682</irid></dc:creator><prism:publicationName>Ученые записки физического факультета Московского Университета</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>3</prism:number><prism:url>http://istina.msu.ru/publications/article/593485080/</prism:url><prism:ID>593485080/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-13 23:54:55</created> <attachments><url>https://istina.msu.ru/download/593485091/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В работе кратко описаны основные возможности библиотеки TalysLib, предоставляющей интерфейс к программе TALYS и ее базе данных. Обсуждается добавление в TalysLib функционала для автоматического получения экспериментальной информации из EXFOR. Проведена проверка нескольких подходов к автоматизации получения экспериментальных данных.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Алгоритм восстановления направления прихода ШАЛ для телескопа СФЕРА</dc:title><dc:creator>Азра К.Ж.<irid>488741851</irid></dc:creator><dc:creator>Галкин В.И.<irid>394024</irid></dc:creator><prism:publicationName>Ученые записки физического факультета Московского Университета</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>4</prism:volume><prism:url>http://istina.msu.ru/publications/article/610286919/</prism:url><prism:ID>610286919/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-11 18:57:54</created> <attachments><url>https://istina.msu.ru/download/610870172/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Восстановление направления прихода широких атмосферных ливней (ШАЛ) является одной из целей эксперимента СФЕРА. Приведен новый метод для восстановления направления, он сравнивает временные задержки фотонов в ФЭУ, перенесенные на снег, с модельными задержками кривого фронта ЧС ШАЛ. Анализированные события вызваны разными ядрами (H, N, Fe), приходящих с разными зенитными (10º, 15º, 20º) и азимутальными углами (0-360º), с первичными энергиями 10 ПэВ и 30 ПэВ. Данный метод дает средние ошибки около 3º для первичных энергий 10 ПэВ на высотах 500 м и 900 м, и приблизительно 2º для 30 ПэВ в среднем для двух высотах.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Изучение взаимного расположения магнитных линий двухкомпонентного случайного магнитного поля</dc:title><dc:creator>Перятинская А.И.<irid>609339003</irid></dc:creator><dc:creator>Юровский В.О.<irid>337973005</irid></dc:creator><dc:creator>Кудряшов И.А.<irid>864241</irid></dc:creator><prism:publicationName>Ученые записки физического факультета Московского Университета</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>4</prism:volume><prism:url>http://istina.msu.ru/publications/article/611168726/</prism:url><prism:ID>611168726/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-13 17:23:44</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Галактические космические лучи играют важную роль в физике космоса. Несмотря на многочисленные исследования в области магнитных полей Галактики, понимание структуры магнитных линий остается недостаточным для предсказания траекторий высокоэнергичных космических частиц в различных конфигурациях галактических магнитных полей. В этой работе магнитное поле исследуется численно, путем построения его двухкомпонентной модели и дальнейшего ее качественного и статистического анализа. На качественном уровне представлены результаты моделирования случайного изотропного поля, где магнитные линии расположены близко друг к другу. В таком случае наблюдается регулярная структура (см. раздел 2.2). Показано, что при моделировании изотропного случайного поля наблюдается диффузионный режим движения. При добавлении регулярной компоненты определенной интенсивности продольный режим транспорта становится баллистическим.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Методика поиска и выделения событий ШАЛ в данных прототипа широкоугольного телескопа SIT</dc:title><dc:creator>Пантюхин А.В.<irid>415878029</irid></dc:creator><dc:creator>Аминева А.А.<irid>415877713</irid></dc:creator><dc:creator>Подгрудков Д.А.<irid>350224240</irid></dc:creator><prism:publicationName>Ученые записки физического факультета Московского Университета</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>2023</prism:volume><prism:number>4</prism:number><prism:url>http://istina.msu.ru/publications/article/610869514/</prism:url><prism:ID>610869514/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-12 18:38:30</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Small Imaging Telescope (SIT) — прототип широкоугольного телескопа с апертурой около 0.1 м2, оснащенный матрицей из SiPM, которые имеют ряд преимуществ по сравнению с вакуумными фотоэлектронными умножителями. В данной работе представлена методика поиска и выделения событий ШАЛ в эксперименте SIT, работающего в связке с комплексом HiSCORE. Были проанализированы данные за 2019–2022 гг., всего около 7 млн. кадров, среди которых было обнаружено около 2 млн. событий от ШАЛ. Поиск проводился в несколько этапов: первичная калибровка кадров по синхроимпульсу, поиск событий и их очистка по методике, приведенной в работе.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>АВТОМАТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ГОЛОВНОЙ УДАРНОЙ ВОЛНЫ И МАГНИТОПАУЗЫ МАГНИТОСФЕРЫ МЕРКУРИЯ ПО ДАННЫМ МАГНИТОМЕТРА КОСМИЧЕСКОГО АППАРАТА MESSENGER</dc:title><dc:creator>Невский Д.В.<irid>136921775</irid></dc:creator><dc:creator>Лаврухин А.С.<irid>9640993</irid></dc:creator><dc:creator>Алексеев И.И.<irid>397642</irid></dc:creator><prism:publicationName>Космические исследования</prism:publicationName> <dc:publisher>ФГБУ "Издательство "Наука"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>61</prism:volume><prism:number>3</prism:number><prism:startingPage>189</prism:startingPage><prism:endingPage>201</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/554337450/</prism:url><prism:ID>554337450/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-03 14:05:34</created> <attachments><url>https://istina.msu.ru/download/611466537/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>ПАЛЕОИНФОРМАТИВНОСТЬ ТЕРМООСТАТОЧНОЙ НАМАГНИЧЕННОСТИ, СФОРМИРОВАННОЙ В УСЛОВИЯХ СЖАТИЯ</dc:title><dc:creator>Максимочкин В.И.<irid>2525004</irid></dc:creator><dc:creator>Павлов А.С.<irid>604495762</irid></dc:creator><prism:publicationName>Гелиогеофизические исследования</prism:publicationName> <dc:publisher>Федеральное государственное бюджетное учреждение "Институт прикладной геофизики им. академика Е.К. Федорова"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>38</prism:volume><prism:startingPage>61</prism:startingPage><prism:endingPage>65</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/595568076/</prism:url><prism:ID>595568076/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-20 15:44:59</created> <attachments><url>https://istina.msu.ru/download/611775172/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>На океаническом базальте со дна Красного моря исследовано образование термоостаточной намагниченности (TRMp) в условиях квазиоодноосного сжатия. Показано, что величина TRMp зависит от направления магнитного поля относительно оси преимущественного сжатия: влияние давления максимально при параллельной ориентации и минимально при перпендикулярной ориентации поля относительно оси сжатия. Проведено определение величины магнитного поля по TRMp, сформированной в стрессовых условиях, методом Телье-Коэ. Показано, что поле, рассчитанное по TRMp, созданной при Р||Н (Р=100 МПа) занижено на 41.6%, при перпендикулярной ориентации – на 10%.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>МОДЕЛЬ ПОВЕРХНОСТИ СЕЙСМИЧЕСКОГО РАЗРЫВА ЗЕМЛЕТРЯСЕНИЯ “ЧИГНИК” (АЛЯСКА, США) 29.07.2021 ПО ДАННЫМ СПУТНИКОВОЙ РАДАРНОЙ ИНТЕРФЕРОМЕТРИИ И ГНСС</dc:title><dc:creator>Конвисар АМ<irid>554049045</irid></dc:creator><dc:creator>Михайлов ВО<irid>7962112</irid></dc:creator><dc:creator>Волкова М.<irid>285519599</irid></dc:creator><dc:creator>Смирнов ВБ<irid>552793</irid></dc:creator><prism:publicationName>Вулканология и сейсмология</prism:publicationName><prism:doi>10.31857/S0203030623700256</prism:doi> <dc:publisher>Федеральное государственное бюджетное учреждение науки Институт вулканологии и сейсмологии ДВО РАН</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>5</prism:number><prism:startingPage>74</prism:startingPage><prism:endingPage>83</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/602289641/</prism:url><prism:ID>602289641/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-10-15 22:24:29</created> <attachments><url>https://istina.msu.ru/download/602289693/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В работе представлена новая модель поверхности сейсмического разрыва землетрясения “Чигник”Mw = 8.2, которое произошло у побережья полуострова Аляска 29.07.2021. Модель построена по дан-ным о полях смещений земной поверхности, полученных методами спутниковой радарной интер-ферометрии по снимкам спутников Sentinel-1A и 1B, и данным о горизонтальных смещениях напунктах GPS в районе землетрясения. Использованы спутниковые радарные снимки за период с17.07 по 10.08.2021 и данные GPS с 18.07 по 08.08.2021. Все эти смещения включают косейсмическиеи часть постсейсмических смещений. При построении модели поверхности разрыва использованорешение Ф. Поллитца задачи о поле смещений поверхности сферической радиально расслоеннойпланеты в результате смещений на расположенном внутри нее прямоугольном разрыве. В качестверегуляризации решаемой обратной задачи ставилось условие близости направления подвижки накаждом элементе плоскости разрыва к заданному направлению, определяемому по данным сейсмо-логии. В построенной модели область сейсмического разрыва аппроксимирована одной плоско-стью протяжeнностью 225 км по простиранию, 126 км по падению, разделeнной на 48 одинаковыхэлементов. Согласно построенной модели, тип смещений – это практически чистый надвиг, а сме-щения, в целом, произошли по всей очаговой области. Максимальное смещение составило 5.7 мпри среднем смещении по всей плоскости 2.2 м. Сейсмический момент, рассчитанный при значе-нии модуля сдвига 32 ГПа по полученным параметрам площадки и смещениям на ней, составил1.95 × 10^21 Н м (Мw = 8.13), что близко к оценкам USGS и GCMT, полученным по сейсмологическимданным.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Электронная публикация</category><dc:title>9 New Variable Stars in Exoplanetary Transit Fields Observed at the Caucasus Mountain Observatory</dc:title><dc:creator>Tarasenkov A.<irid>536967523</irid></dc:creator><dc:creator>Zubareva A.M.<irid>5087555</irid></dc:creator><dc:creator>Maslennikova N.<irid>141892825</irid></dc:creator><dc:creator>Belinskii A.<irid>395690</irid></dc:creator><prism:publicationName>Peremennye Zvezdy Prilozhenie</prism:publicationName><prism:doi>10.24412/2221-0474-2024-24-1</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>24</prism:volume><prism:number>1</prism:number><prism:startingPage>1</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/627278949/</prism:url><prism:ID>627278949/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-05 17:34:32</created> <attachments><url>https://istina.msu.ru/download/627279130/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Observations with the 60-cm telescope revealed several variable-star candidates that were than studied in more detail using data from photometric archives. We report 9 new variable stars, most of them eclipsing binaries, and present their variability types, variation ranges, light elements, light curves, finding charts, and lists of photometric observations.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>ФемтоСкан Х в кластере Ломоносов</dc:title><dc:creator>Яминский И.В.<irid>839749</irid></dc:creator><dc:creator>Ахметова А.И.<irid>17356968</irid></dc:creator><dc:creator>Советников Т.О.<irid>327452832</irid></dc:creator><dc:creator>Н Е.Максимова<irid>535533983</irid></dc:creator><dc:creator>Иванов О.В.<irid>453463930</irid></dc:creator><prism:publicationName>Наноиндустрия</prism:publicationName><prism:doi>10.22184/1993-8578.2023.16.1.14.18</prism:doi> <dc:publisher>АО "Рекламно-издательский центр "Техносфера"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>16</prism:volume><prism:number>1</prism:number><prism:startingPage>14</prism:startingPage><prism:endingPage>18</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/536862541/</prism:url><prism:ID>536862541/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-02-17 17:45:05</created> <attachments><url>https://istina.msu.ru/download/536862590/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Быстродействующий сканирующий зондовый микроскоп ФемтоСкан Х был представлен на выставке в день торжественного открытия кластера «Ломоносов» Инновационного научно-технологического центра МГУ «Воробьевы горы». Открытие кластера состоялось 25 января при участии Президента Российской Федерации Владимира Путина, Мэра Москвы Сергея Собянина и ректора МГУ имени М.В.Ломоносова В.А. Садовничего.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Периферийные датчики для сканирующей зондовой микроскопии</dc:title><dc:creator>Терентьев А.Д.<irid>543711841</irid></dc:creator><dc:creator>Яминский И.В.<irid>839749</irid></dc:creator><prism:publicationName>Наноиндустрия</prism:publicationName><prism:doi>10.22184/1993-8578.2023.16.2.140.143</prism:doi> <dc:publisher>АО "Рекламно-издательский центр "Техносфера"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>16</prism:volume><prism:number>2</prism:number><prism:url>http://istina.msu.ru/publications/article/546893901/</prism:url><prism:ID>546893901/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-04-03 13:00:17</created> <attachments><url>https://istina.msu.ru/download/546893913/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Сканирующая зондовая микроскопия дает информацию об изучаемых объектах с точностью до десятых и сотых долей нанометра при временном разрешении в миллисекунды и выше. Оснащение зондового микроскопа дополнительными периферийными датчиками для измерения температуры и влажности является полезной опцией. При изучении живых клеток необходимо контролировать и поддерживать концентрацию углекислого газа —для этого необходимы компактные и удобные датчики углекислого газа с соответствующим программным интерфейсом, ориентированным на пользователя. При контролируемом перемещении образца, особенно при использовании больших полей обзора, важными аксессуарами становятся концевые датчики. Они позволят не выходить за рамки выбранной области исследования объекта наблюдения. В настоящей статье описано простое решение по эффективному использованию датчиков температуры, влажности, концентрации СО2 и перемещений.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Теория и практика сканирующей зондовой микроскопии: новые решения для физики, химии, биологии и медицины</dc:title><dc:creator>Ахметова А.И.<irid>17356968</irid></dc:creator><dc:creator>Иванов О.В.<irid>453463930</irid></dc:creator><dc:creator>Максимова Н.Е.<irid>535533983</irid></dc:creator><dc:creator>Советников Т.О.<irid>327452832</irid></dc:creator><dc:creator>Терентьев А.Д.<irid>543711841</irid></dc:creator><dc:creator>Яминский И.В.<irid>839749</irid></dc:creator><prism:publicationName>Наноиндустрия</prism:publicationName><prism:doi>10.22184/1993-8578.2023.16.2.88.94</prism:doi> <dc:publisher>АО "Рекламно-издательский центр "Техносфера"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>16</prism:volume><prism:number>2</prism:number><prism:url>http://istina.msu.ru/publications/article/546893868/</prism:url><prism:ID>546893868/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-04-03 12:56:19</created> <attachments><url>https://istina.msu.ru/download/546893877/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>С момента первой публикации по сканирующей зондовой микроскопии прошёл 41 год. За это время сканирующие зондовые микроскопы, позволяющие заглянуть в наномир, стали практическими инструментами физиков, химиков, биологов, медиков, производственников и учителей. Зондовые микроскопы образовали обширное семейство высокоточных и высокоинформативных приборов для наблюдения топографии, морфологии и широкого спектра физико-химических свойств изучаемых объектов. При этом выдавая детализацию получаемых данных на уровне долей нанометра с временным разрешением в миллисекунды. Остались ли нерешенные задачи? Конечно! Об их небольшой части, о задачах и проблемах в зондовой микроскопии наш рассказ.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Сканирующая зондовая микроскопия Substantia nigra</dc:title><dc:creator>Ахметова А.И.<irid>17356968</irid></dc:creator><dc:creator>Советников Т.О.<irid>327452832</irid></dc:creator><dc:creator>Зорикова Е.О.<irid></irid></dc:creator><dc:creator>Яминский И.В.<irid>839749</irid></dc:creator><prism:publicationName>Наноиндустрия</prism:publicationName><prism:doi>10.22184/1993-8578.2024.17.1.26.31</prism:doi> <dc:publisher>АО "Рекламно-издательский центр "Техносфера"</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>17</prism:volume><prism:number>1</prism:number><prism:startingPage>26</prism:startingPage><prism:endingPage>31</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/629337225/</prism:url><prism:ID>629337225/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-12 12:10:21</created> <attachments><url>https://istina.msu.ru/download/629337324/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Сверхразрешающая способность микролинз в исследование биологических объектов</dc:title><dc:creator>Сенотрусова С.А.<irid>323316612</irid></dc:creator><dc:creator>Ахметова А.И.<irid>17356968</irid></dc:creator><dc:creator>Яминский И.В.<irid>839749</irid></dc:creator><prism:publicationName>Наноиндустрия</prism:publicationName><prism:doi>10.22184/1993-8578.2023.16.3-4.168.176</prism:doi> <dc:publisher>АО "Рекламно-издательский центр "Техносфера"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>16</prism:volume><prism:number>3-4</prism:number><prism:url>http://istina.msu.ru/publications/article/560691061/</prism:url><prism:ID>560691061/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-22 16:18:23</created> <attachments><url>https://istina.msu.ru/download/561791826/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Пространственное разрешение любого обычного оптического микроскопа ограничено дифракцией световых волн на апертуре объектива, при белом свете в лучших оптических микроскопах предел разрешения составляет около 200 нм. Один из способов преодоления данного ограничения — микролинзовая микроскопия. Микроскопия с использованием микросфер является одним из видов микроскопии без использования меток, в котором сферические микролинзы помещаются непосредственно на образец или вблизи образца для получения оптических изображений высокого разрешения. Благодаря визуализации без использования меток и в режиме реального времени оптическая микролинзовая микроскопия демонстрирует большой потенциал в медицине и биологии.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>ЦМИТ как центр притяжения талантливых школьников и студентов</dc:title><dc:creator>Ахметова А.И.<irid>17356968</irid></dc:creator><dc:creator>Яминский Д.И.<irid>22139372</irid></dc:creator><dc:creator>Советников Т.О.<irid>327452832</irid></dc:creator><dc:creator>Федосеев А.И.<irid>1604786</irid></dc:creator><dc:creator>Яминский И.В.<irid>839749</irid></dc:creator><prism:publicationName>Наноиндустрия</prism:publicationName><prism:doi>10.22184/1993-8578.2023.16.6.394.399</prism:doi> <dc:publisher>АО "Рекламно-издательский центр "Техносфера"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>16</prism:volume><prism:number>6</prism:number><prism:startingPage>394</prism:startingPage><prism:endingPage>399</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/604516092/</prism:url><prism:ID>604516092/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-10-24 16:41:14</created> <attachments><url>https://istina.msu.ru/download/604516107/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>ФемтоСкан Онлайн: 3D визуализация и обработка данных бионаноскопии</dc:title><dc:creator>Ахметова А.И.<irid>17356968</irid></dc:creator><dc:creator>Яминский И.В.<irid>839749</irid></dc:creator><dc:creator>Советников Т.О.<irid>327452832</irid></dc:creator><prism:publicationName>Наноиндустрия</prism:publicationName><prism:doi>10.22184/1993-8578.2023.16.7-8.450.455</prism:doi> <dc:publisher>АО "Рекламно-издательский центр "Техносфера"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>16</prism:volume><prism:number>7-8</prism:number><prism:startingPage>450</prism:startingPage><prism:endingPage>455</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/620069310/</prism:url><prism:ID>620069310/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-15 12:31:06</created> <attachments><url>https://istina.msu.ru/download/620069317/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Сердце капиллярного микроскопа</dc:title><dc:creator>Ахметова А.И.<irid>17356968</irid></dc:creator><dc:creator>Советников Т.О.<irid>327452832</irid></dc:creator><dc:creator>Максимова Н.Е.<irid>535533983</irid></dc:creator><dc:creator>Терентьев А.Д.<irid>543711841</irid></dc:creator><dc:creator>Ужегов А.А.<irid>572347757</irid></dc:creator><dc:creator>Яминский И.В.<irid>839749</irid></dc:creator><prism:publicationName>Наноиндустрия</prism:publicationName><prism:doi>10.22184/1993-8578.2023.16.7-8.444.448</prism:doi> <dc:publisher>АО "Рекламно-издательский центр "Техносфера"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>16</prism:volume><prism:number>7-8</prism:number><prism:startingPage>444</prism:startingPage><prism:endingPage>448</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/620069481/</prism:url><prism:ID>620069481/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-15 12:36:13</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Влияние введения атома хлора в ароматический фрагмент 1,3-дикетонного лиганда на эффективность люминесценции новых координационных соединений иона Eu3+</dc:title><dc:creator>Цориева А.В.<irid>533712270</irid></dc:creator><dc:creator>Поликовский Т.А.<irid>535273978</irid></dc:creator><dc:creator>Метлин М.Т.<irid>170094980</irid></dc:creator><dc:creator>Коршунов В.М.<irid>38250550</irid></dc:creator><dc:creator>Тайдаков И.В.<irid>170094977</irid></dc:creator><prism:publicationName>Журнал прикладной спектроскопии</prism:publicationName><prism:doi>10.47612/0514-7506-2023-90-2-230-238</prism:doi> <dc:publisher>Наука и техника</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>90</prism:volume><prism:number>2</prism:number><prism:startingPage>230</prism:startingPage><prism:endingPage>238</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/628518071/</prism:url><prism:ID>628518071/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-09 18:46:00</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Изучено влияние тяжелого атома хлора, введенного в ароматический фрагмент 1,3-дикетонного лиганда в составе координационных соединений иона Eu3+, на спектрально-люминесцентные свойства комплексных соединений. Данные, полученные из спектров поглощения, оптического возбуждения, флуоресценции и фосфоресценции, а также из кинетических зависимостей интенсивности люминесценции, позволяют оценить эффективность внутримолекулярного переноса энергии. Показано, что замещение водорода хлором повышает энергию первого возбужденного синглетного уровня лигандного окружения от 24500 до 26000 см–1, при этом не влияет на энергию триплетного уровня. Установлено, что введение хлора приводит к уменьшению константы безызлучательной релаксации от 1290 до 840 с–1 и, как следствие, к трехкратному увеличению квантового выхода люминесценции от 23 до 64 %. Разработан новый подход в рациональном конструировании координационных соединений ионов Eu3+ c лигандами из класса 1,3-дикетонов, заключающийся в замещении водорода тяжелым атомом хлора в ароматическом фрагменте лиганда.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Влияние рН среды на свойства углеродных точек с различной функционализацией поверхности: размеры и квантовый выход фотолюминесценции</dc:title><dc:creator>Хмелева М.Ю.<irid>281328677</irid></dc:creator><dc:creator>Лаптинский К.А.<irid>7105481</irid></dc:creator><dc:creator>Доленко Т.А.<irid>420914</irid></dc:creator><prism:publicationName>Оптика и спектроскопия</prism:publicationName><prism:doi>10.21883/os.2023.06.55913.104-23</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>131</prism:volume><prism:number>6</prism:number><prism:startingPage>797</prism:startingPage><prism:endingPage>804</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/578906305/</prism:url><prism:ID>578906305/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-07-19 11:00:38</created> <attachments><url>https://istina.msu.ru/download/578906311/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Исследованы углеродные точки, полученные гидротермальным методом с последующей функционализацией поверхности карбоксильными и гидроксильными группами. В результате изучения оптических свойств и суспензируемости углеродных точек, имеющих на поверхности преимущественно один тип функциональных групп, было обнаружено существенное влияние на них кислотности окружения. Установлено, что наибольшие изменения квантового выхода фотолюминесценции проявляются в диапазонах изменения от рН 2 до рН 5 для углеродных точек с карбоксильными поверхностными группами и от рН 8 до рН 12 для углеродных точек с гидроксильными группами. Обнаружено, что изменение фотолюминесцентных свойств исследуемых наночастиц в указанных выше диапазонах рН может быть обусловлено не только изменением заряда поверхности при де-/протонировании функциональных групп, но и агрегацией наночастиц, обусловленной этим же де-/протонированием. Ключевые слова: углеродные точки, фотолюминесцентная спектроскопия, наносенсорика, водородный показатель, функционализация поверхности наночастиц, агрегация.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Диагностика вредных примесей в водных средах с помощью спектроскопических методов и алгоритмов машинного обучения</dc:title><dc:creator>Лаптинский К.А.<irid>7105481</irid></dc:creator><dc:creator>Буриков С.А.<irid>420913</irid></dc:creator><dc:creator>Сарманова О.Э.<irid>46006074</irid></dc:creator><dc:creator>Вервальд А.М.<irid>7136944</irid></dc:creator><dc:creator>Утегенова Л.С.<irid>500251439</irid></dc:creator><dc:creator>Пластинин И.В.<irid>7130950</irid></dc:creator><dc:creator>Доленко Т.А.<irid>420914</irid></dc:creator><prism:publicationName>Оптика и спектроскопия</prism:publicationName><prism:doi>10.21883/os.2023.06.55915.106-23</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>131</prism:volume><prism:number>6</prism:number><prism:startingPage>810</prism:startingPage><prism:endingPage>816</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/578907032/</prism:url><prism:ID>578907032/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-07-19 13:28:26</created> <attachments><url>https://istina.msu.ru/download/578907566/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Каскадное ускорение электронов в плазменном канале, созданном несколькими лазерными импульсами петаваттной мощности</dc:title><dc:creator>Стародубцева Е.М.<irid>367797312</irid></dc:creator><dc:creator>Цымбалов И.Н.<irid>7072221</irid></dc:creator><dc:creator>Иванов К.А.<irid>579944</irid></dc:creator><dc:creator>Горлова Д.А.<irid>27638815</irid></dc:creator><dc:creator>Савельев А.Б.<irid>386630</irid></dc:creator><prism:publicationName>Квантовая электроника</prism:publicationName> <dc:publisher>Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>53</prism:volume><prism:number>3</prism:number><prism:startingPage>189</prism:startingPage><prism:endingPage>193</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/561091004/</prism:url><prism:ID>561091004/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-23 16:42:27</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Предложен способ расчета многостадийной схемы прямого лазерно-плазменного ускорения электронов для преодоле-ния эффекта дефазировки и истощения пучка накачки. Предлагаемый метод позволяет оценить параметры плазмен-ного канала для каждой стадии ускорения, а также допустимые диапазоны углов инжекции электронов в следующуюстадию. Приведен расчет трехстадийного ускорения электронов до энергии 1 ГэВ при заряде пучка 400 нКл.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Наночастицы магнетита увеличивают проводимость азолектинового бислоя в неоднородном магнитном поле</dc:title><dc:creator>Аносов А.А.<irid>433342981</irid></dc:creator><dc:creator>Борисова Е.Д.<irid>99329979</irid></dc:creator><dc:creator>Таранов И.В.<irid>1685871</irid></dc:creator><dc:creator>Григорян И.В.<irid>517624499</irid></dc:creator><dc:creator>Черепенин В.А.<irid>14812036</irid></dc:creator><dc:creator>Хомутов Г.Б.<irid>561949</irid></dc:creator><prism:publicationName>Журнал радиоэлектроники</prism:publicationName><prism:doi>10.30898/1684-1719.2023.12.5</prism:doi> <dc:publisher>Учреждение Российской академии наук Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>2023</prism:volume><prism:number>12</prism:number><prism:startingPage>1</prism:startingPage><prism:endingPage>15</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/619797304/</prism:url><prism:ID>619797304/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-14 21:16:55</created> <attachments><url>https://istina.msu.ru/download/619797396/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В методе магнитофекции магнитные поля и магнитныенаночастицы используются для повышения эффективности доставки генов в клетки. Магнитофекция усиливает внедрение в клетки генных векторов, с которыми связаны магнитные наночастицы, за счет действия магнитного поля, которое удерживает наночастицы в области их применения. При этом считается,что само магнитное поле не меняет механизм поглощения (эндоцитоза) наночастиц. Как полезный эффект магнитофекции – доставка вектора в клетку,так и ее побочный эффект - цитотоксичность связаны с взаимодействием частиц с клеточными мембранами и, в частности, с липидными бислоями. В нашей работе исследовано влияние приложенного стационарного неоднородного магнитного поля и сферических суперпарамагнитных наночастиц магнетитадиаметром около 4 нм на проводимость азолектиновых бислойных липидных мембран. Мембраны формировали в стационарном магнитном поле с магнитной индукцией до 26 мТл. Магнитное поле никак не влияло на проводимость мембраны. После контроля мембранной проводимости в окружающий мембрану раствор добавляли магнитные наночастицы. Добавка проводилась с однойстороны мембраны таким образом, чтобы магнитное поле притягивало наночастицы к поверхности мембраны. После добавления наночастиц в магнитном поле проводимость мембран увеличивалась на один-два порядка.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Управление автоматической парковкой беспилотного автомобиля на основе метода машинного обучения с подкреплением</dc:title><dc:creator>Тюленев Илья Дмитриевич<irid>592844195</irid></dc:creator><dc:creator>Филимонов Николай Борисович<irid>2771948</irid></dc:creator><prism:publicationName>Высокопроизводительные вычислительные системы и технологии</prism:publicationName> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>7</prism:volume><prism:number>1</prism:number><prism:startingPage>159</prism:startingPage><prism:endingPage>165</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/592844462/</prism:url><prism:ID>592844462/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-11 09:58:48</created> <attachments><url>https://istina.msu.ru/download/593479257/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Рассматривается задача автоматизация управления парковкой (АУП) беспилотного автомобиля (БПА). Да- на постановка задачи АУП БПА с учётом ограничений, обеспечивающих безопасность парковочного маневра. На основе метода машинного обучения с подкреплением синтезирован алгоритм АУП БПА, реализованный на языке Python с использованием математических библиотек Matplotlib и NumPy. Проведена компьютерная верификация синтезированного алгоритма и определены оптимальные значения параметров обучения.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>ЦИКЛЫ АКТИВНОСТИ ОДИНОЧНОГО G5 III–IV ГИГАНТА HD 199178</dc:title><dc:creator>Саванов И.С.<irid>329604810</irid></dc:creator><dc:creator>Тарасенков А.Н.<irid>536967523</irid></dc:creator><dc:creator>Самусь Н.Н.<irid>2302839</irid></dc:creator><dc:creator>Дмитриенко Е.С.<irid>387346</irid></dc:creator><prism:publicationName>Астрономический журнал</prism:publicationName><prism:doi>10.31857/S0004629923080108</prism:doi> <dc:publisher>ФГБУ "Издательство "Наука"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>100</prism:volume><prism:number>10</prism:number><prism:startingPage>871</prism:startingPage><prism:endingPage>878</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/594394847/</prism:url><prism:ID>594394847/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-16 12:42:38</created> <attachments><url>https://istina.msu.ru/download/616186180/</url><url>https://istina.msu.ru/download/604494728/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Получен уникальный ряд фотометрических данных за период более ста лет для быстровращающегося одиночного G5 III–IV гиганта HD 199178 (V1794 Cyg), принадлежащего к группе звезд типа FK Com. Выполненный нами анализ долговременной переменности активности этой звезды основан на всех доступных по литературным источникам измерений ее блеска в фильтре В. Для оценкиблеска HD 199178 в эпоху, предшествующую фотоэлектрическим и ПЗС-наблюдениям, были проведены измерения фотопластинок из архива ГАИШ, отснятых на Краснопресненской обсерватории МГУ в Москве (4 пластинки, отснятые с 1898 по 1903 г., и 41 пластинка за период с 1935 по 1958 г.). В итоге всего было получено 2142 оценки блеска звезды в фильтре В. Они обладают уникальной продолжительностью в 118.3 года и охватывают интервал времени с 1898 г. по июль 2016 г. Найдены свидетельства о существовании долговременных циклов фотометрической переменности с величинами порядка 25–60 лет. Сделано предположение о существовании возможных циклов активности в 2000, 3165, 5050, 9000 и 21600d (соответственно, 5.5, 8.7, 16.6, 24.7 и 59.2 лет). Полученные результаты сопоставлены с другими оценками циклов активности у HD 199178. Наиболее достоверным следует признать существование цикла длительностью 8.7–9 лет. Найдено, что для объединения данных в единый массив преобразование величин В в величины V с использованием среднего значения показателя цвета (В - V) не представляется возможным из-за изменений (в том числе циклических) показателей цвета (В - V) со временем.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Экспериментальное исследование движения ударной волны в плазме импульсного объемного разряда в воздухе</dc:title><dc:creator>Милицина А.А.<irid>416135560</irid></dc:creator><dc:creator>Мурсенкова И.В.<irid>534553</irid></dc:creator><prism:publicationName>Вестник Московского университета. Серия 3: Физика, астрономия</prism:publicationName><prism:doi>10.55959/MSU0579-9392.78.2320601</prism:doi> <dc:publisher>Изд-во Моск. ун-та</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>2</prism:number><prism:url>http://istina.msu.ru/publications/article/545285764/</prism:url><prism:ID>545285764/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-03-27 20:59:22</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Экспериментально исследовано движение квазиплоских ударных волн с числами Маха М = 2.20–3.50 в плазме наносекундного комбинированного объемного разряда в воздухе при начальном давлении 10–100 торр на основе высокоскоростной теневой регистрации поля течения. Изучена динамика ударно-волновых конфигураций после инициирования разряда на различных стадиях нестационарного сверхзвукового течения, формирующегося после дифракции плоской ударной волны на прямоугольном препятствии. Обнаружено увеличение скорости фронта ударной волны на временном интервале до 15 мкс в плазменной области протяженностью 9–40 мм и ее зависимость от параметров плазмы. Анализ релаксационных процессов в плазме показал, что к ускорению фронта ударной волны может приводить нагрев воздуха за счет тушения электронно-возбужденных молекул азота, при котором внутренняя энергия переходит в тепловую на временах до 30 мкс.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>О влиянии «красной утечки» светофильтров на оценки блеска звезд поздних спектральных классов на примере наблюдений быстрой переменности симбиотических звезд</dc:title><dc:creator>Никишев Г.Э.<irid>611183236</irid></dc:creator><dc:creator>Масленникова Н.А.<irid>141892825</irid></dc:creator><dc:creator>Татарников А.М.<irid>383508</irid></dc:creator><dc:creator>Парусов К.Ю.<irid>620073073</irid></dc:creator><dc:creator>Белинский А.А.<irid>395690</irid></dc:creator><prism:publicationName>Вестник Московского университета. Серия 3: Физика, астрономия</prism:publicationName><prism:doi>10.55959/MSU0579-9392.78.2360801</prism:doi> <dc:publisher>Изд-во Моск. ун-та</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>78</prism:volume><prism:number>6</prism:number><prism:startingPage>2360801</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/611183661/</prism:url><prism:ID>611183661/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-14 01:02:30</created> <attachments><url>https://istina.msu.ru/download/611489532/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Представлены результаты моделирования зависимости величины «красной утечки» фото метрических фильтров от разных факторов при наблюдениях звезд: показателя цвета 𝑉 − 𝑅, класса светимости, величины межзвездного покраснения, воздушной массы и содержания водяного пара в атмосфере Земли. Ошибка, возникающая из-за неучета «красной утечки» в случае фильтров, использующихся на 0.6-м телескопе КГО ГАИШ, может составлять до 0.6𝑚 − 0.8𝑚 для звезд поздних спектральных классов. Для фильтров 𝑈 и 𝐵 представлены алгоритмы редукции наблюдательных данных. Приведены результаты наблюдений быстрой переменности двух симбиотических звезд CH Cyg и SU Lyn с холодными компонентами очень поздних спектральных классов. Для CH Cyg быстрая переменность была обнаружена в обе датынаблюдений. С учетом эффекта «красной утечки» амплитуда изменений блеска в полосе 𝐵 составила 0.10𝑚 06.11.2019 и 0.19𝑚 15.12.2022 при характерном времени переменности около 20 мин. У SU Lyn быстрая переменность блеска в полосе 𝐵 25.02.2023 обнаружена не была (с точностью до 0.003𝑚).</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Многофотонная квантовая телепортация</dc:title><dc:creator>Белинский А.В.<irid>1581892</irid></dc:creator><dc:creator>Григорьева А.П.<irid>602401420</irid></dc:creator><dc:creator>Джадан И.И.<irid>619224992</irid></dc:creator><prism:publicationName>Вестник Московского университета. Серия 3: Физика, астрономия</prism:publicationName><prism:doi>10.55959/MSU0579-9392.78.2350104</prism:doi> <dc:publisher>Изд-во Моск. ун-та</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>78</prism:volume><prism:number>5</prism:number><prism:startingPage>2350104-1</prism:startingPage><prism:endingPage>2350104-6</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/592869542/</prism:url><prism:ID>592869542/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-11 20:36:48</created> <attachments><url>https://istina.msu.ru/download/592869761/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Исследована возможность многофотонной телепортации с получением клонов запутанных между собой частиц. Рассмотрены вопросы причинности при осуществлении квантовой телепортации.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Система терморегуляции для биосенсоров на основе полевых транзисторов с каналом-нанопроводом</dc:title><dc:creator>Нибудин Г.В.<irid>540811372</irid></dc:creator><dc:creator>Циняйкин И.И.<irid>132334141</irid></dc:creator><dc:creator>Преснова Г.В.<irid>560995</irid></dc:creator><dc:creator>Рубцова М.Ю.<irid>560996</irid></dc:creator><dc:creator>Попов А.А.<irid>504044043</irid></dc:creator><dc:creator>Михайлов П.О.<irid>336789999</irid></dc:creator><dc:creator>Трифонов А.С.<irid>410532</irid></dc:creator><dc:creator>Снигирев О.В.<irid>555431</irid></dc:creator><dc:creator>Крупенин В.А.<irid>561438</irid></dc:creator><dc:creator>Преснов Д.Е.<irid>535801</irid></dc:creator><prism:publicationName>Вестник Московского университета. Серия 3: Физика, астрономия</prism:publicationName><prism:doi>10.55959/MSU0579-9392.79.2410701</prism:doi> <dc:publisher>Изд-во Моск. ун-та</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>79</prism:volume><prism:number>1</prism:number><prism:url>http://istina.msu.ru/publications/article/615050712/</prism:url><prism:ID>615050712/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-27 17:49:49</created> <attachments><url>https://istina.msu.ru/download/631316055/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В работе продемонстрирована система терморегуляции с обратной связью для биосенсоров на основе полевых транзисторов с каналом-нанопроводом, обеспечивающая контроль и поддержание необходимого температурного режима в биоаналитических исследованиях. Элементы системы, включающие полевые транзисторы с каналом-нанопроводом, температурные сенсоры и нагреватели, изготавливались на одном чипе с использованием процессов электронно-лучевой литографии, реактивно-ионного травления и высоковакуумного напыления. Разработана и изготовлена специализированная электроника для контроля и поддержания температуры. Проведены измерения зависимости показаний термометров от мощности нагрева, хорошо согласующиеся с результатами численного моделирования. Проведена демонстрация системы терморегуляции с обратной связью, обеспечивающая установление заданной температуры в диапазоне 25-100 градусов за 20 25 сек. Демонстрация системы с терморегулятором для детектирования нуклеиновых кислот была проведена с использованием синтетической одноцепочечной ДНК, представляющей собой фрагмент гена бактерии E. coli. Минимально детектируемый отклик наблюдался для образца с концентрацией 3 фМ.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Расчет фазовых равновесий чистых легких углеводородов с помощью уравнения состояния PC-SAFT и алгоритма прямой минимизации энергии</dc:title><dc:creator>Исаева А.В.<irid>2937547</irid></dc:creator><dc:creator>Бевзо М.О.<irid>297641474</irid></dc:creator><prism:publicationName>Вестник Московского университета. Серия 3: Физика, астрономия</prism:publicationName> <dc:publisher>Изд-во Моск. ун-та</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>78</prism:volume><prism:number>6</prism:number><prism:url>http://istina.msu.ru/publications/article/614214727/</prism:url><prism:ID>614214727/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-24 18:52:44</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В нефтегазовой отрасли растет интерес к использованию уравнения состояния PC-SAFT для прогнозирования фазового поведения и физических свойств углеводородов. В настоящей статье показано, как это уравнение состояния может быть использовано в сочетании с алгоритмом прямой минимизации энергии изохорно-изотермической системы для расчета параметров парожидкостного равновесия углеводородов. Предложенный подход тестируется на примере четырех веществ: метана, этана, пропана и н-бутана.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Новая инфракрасная камера Кавказской Горной Обсерватории ГАИШ МГУ: конструкция, основные параметры и первый свет</dc:title><dc:creator>Желтоухов С.Г.<irid>140314266</irid></dc:creator><dc:creator>Татарников А.М.<irid>383508</irid></dc:creator><dc:creator>Белякова А.А.<irid>629897298</irid></dc:creator><dc:creator>Кокшарова Е.А.<irid>629629257</irid></dc:creator><prism:publicationName>Вестник Московского университета. Серия 3: Физика, астрономия</prism:publicationName> <dc:publisher>Изд-во Моск. ун-та</dc:publisher><prism:publicationDate>2024</prism:publicationDate><prism:number>1</prism:number><prism:startingPage>2410801</prism:startingPage><prism:endingPage>2410801</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/629897723/</prism:url><prism:ID>629897723/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-14 12:17:38</created> <attachments><url>https://istina.msu.ru/download/630501546/</url><url>https://istina.msu.ru/download/629897734/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В работе представлен прототип инфракрасного фотометра, созданный в ГАИШ МГУ на базе коммерческого светочувствительного модуля Gavin-615A. Основной спектральный рабочий диапазон фотометра 3–5 мкм. Исследования детектора фотометра показали, что его параметры соответствуют заявленным производителем. Нелинейность детектора не превышает ∼ 5% во всем диапазоне сигналов, для ее исправления определены коэффициенты корректирующих функций. Дополнительно определены шум считывания RN = 1200 ± 210 e−, коэффициент преобразования GAIN = 520 ± 9 e−/ ADU, величина сигнала кадра подложки BIAS = 960.5 ± 2.2 ADU и темновой ток ≈ (9.3 ± 1.1) · 106 e−/с, состоящий из суммы темнового тока детектора и излучения входного окна чувствительного модуля и измеренный нами припри температуре входного окна 6◦C. С прибором начаты наблюдения на 2.5-м телескопе Кавказской горной станции МГУ, первые результаты которых приведены в работе. Невиньетированное поле зрения составило 30′′. В полосе M при хороших атмосферных условиях достигнутокачество изображения, близкое к дифракционному. За время накопления 20 с с отношением SNR∼ 10 получены изображения звезды с блеском L = 7.96 и M = 6.78. Показано, что при высоком качестве изображений за время накопления 20 с в полосах L и M с SNR=3 можнонаблюдать звезды до ∼9m и ∼8m соответственно. Основной модуль фотометра использовался также при измерениях яркости фона неба.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Модель формирования нанорельефа поверхности при облучении газовыми кластерными ионами</dc:title><dc:creator>Бессмертный Д.Р.<irid>563929877</irid></dc:creator><dc:creator>Иешкин А.Е.<irid>2528058</irid></dc:creator><prism:publicationName>Вестник Московского университета. Серия 3: Физика, астрономия</prism:publicationName><prism:doi>10.55959/MSU0579-9392.79.2410302</prism:doi> <dc:publisher>Изд-во Моск. ун-та</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>79</prism:volume><prism:number>1</prism:number><prism:startingPage>1</prism:startingPage><prism:endingPage>5</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/621476874/</prism:url><prism:ID>621476874/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-25 22:47:37</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Воздействие плазмы N2 на монослои дисульфида молибдена</dc:title><dc:creator>Хлебников С.А.<irid>587999688</irid></dc:creator><dc:creator>Соловых А.А.<irid>417457219</irid></dc:creator><dc:creator>Манкелевич Ю.А.<irid>438122</irid></dc:creator><dc:creator>Воронина Е.Н.<irid>277965</irid></dc:creator><prism:publicationName>Письма в "Журнал технической физики"</prism:publicationName><prism:doi>10.21883/pjtf.2023.18.56169.19640</prism:doi> <dc:publisher>Физико-технический институт им. А.Ф.Иоффе Российской академии наук</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>49</prism:volume><prism:number>18</prism:number><prism:startingPage>8</prism:startingPage><prism:url>http://istina.msu.ru/publications/article/587999689/</prism:url><prism:ID>587999689/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-26 21:08:38</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Сканирующая капиллярная микроскопия в исследовании нейронов</dc:title><dc:creator>Ахметова А.И.<irid>17356968</irid></dc:creator><dc:creator>Советников Т.О.<irid>327452832</irid></dc:creator><dc:creator>Яминский И.В.<irid>839749</irid></dc:creator><prism:publicationName>Медицина и высокие технологии</prism:publicationName><prism:doi>10.34219/2306-3645-2023-13-1-36-40</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>13</prism:volume><prism:number>1</prism:number><prism:startingPage>36</prism:startingPage><prism:endingPage>40</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/560688510/</prism:url><prism:ID>560688510/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-22 14:01:00</created> <attachments><url>https://istina.msu.ru/download/560688621/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В статье рассматриваются актуальные вопросы нейробиологии в направлении сканирующей капиллярной микроскопий нейронов. Исследование живых нейронов с помощью методов зондовой микроскопии позволяет получать не только 3D изображения, но и проводить продолжительные измерения, оценивать параметры роста аксонов и дендритов, определять механические свойства сетей живых нейронов. Отдельная важная задача – этолокальная контролируемая доставка реагентов, определение концентрации химических веществ, например, нейротрансмиттеров</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Изучение морфологии и механических свойств живых клеток с помощью сканирующей капиллярной микроскопии</dc:title><dc:creator>Советников Т.О.<irid>327452832</irid></dc:creator><dc:creator>Ахметова А.И.<irid>17356968</irid></dc:creator><dc:creator>Максимова Н.Е.<irid>535533983</irid></dc:creator><dc:creator>Терентьев А.Д.<irid>543711841</irid></dc:creator><dc:creator>Яминский Д.И.<irid>22139372</irid></dc:creator><dc:creator>Яминский И.В.<irid>839749</irid></dc:creator><prism:publicationName>Медицина и высокие технологии</prism:publicationName><prism:doi>10.34219/2306-3645-2023-13-4-5-9</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>4</prism:number><prism:startingPage>5</prism:startingPage><prism:endingPage>9</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/621396177/</prism:url><prism:ID>621396177/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-22 17:54:27</created> <attachments><url>https://istina.msu.ru/download/621396205/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Аппаратура сканирующей капиллярной микроскопии для биомедицины</dc:title><dc:creator>Советников Т.О.<irid>327452832</irid></dc:creator><dc:creator>Ахметова А.И.<irid>17356968</irid></dc:creator><dc:creator>Белов Ю.К.<irid>30693496</irid></dc:creator><dc:creator>Максимова Н.Е.<irid>535533983</irid></dc:creator><dc:creator>Терентьев А.Д.<irid>543711841</irid></dc:creator><dc:creator>Яминский Д.И.<irid>22139372</irid></dc:creator><dc:creator>Яминский И.В.<irid>839749</irid></dc:creator><prism:publicationName>Медицина и высокие технологии</prism:publicationName><prism:doi>10.34219/2306-3645-2023-13-3-5-9</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>3</prism:number><prism:startingPage>5</prism:startingPage><prism:endingPage>9</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/631320865/</prism:url><prism:ID>631320865/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-19 16:46:41</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Избранные активные ядра галактик из обзора СРГ/eROSITA: оптические и ИК-наблюдения на 2.5-м телескопе КГО ГАИШ МГУ в 2021 и 2022 годах</dc:title><dc:creator>Белинский А.А.<irid>395690</irid></dc:creator><dc:creator>Додин А.В.<irid>852843</irid></dc:creator><dc:creator>Желтоухов С.Г.<irid>140314266</irid></dc:creator><dc:creator>Постнов К.А.<irid>383511</irid></dc:creator><dc:creator>Потанин С.А.<irid>1244408</irid></dc:creator><dc:creator>Татарников А.М.<irid>383508</irid></dc:creator><dc:creator>Тарасенков А.Н.<irid>536967523</irid></dc:creator><dc:creator>Шатский Н.И.<irid>1727826</irid></dc:creator><dc:creator>Медведев П.С.<irid>207462065</irid></dc:creator><dc:creator>Хорунжев Г.А.<irid>61469568</irid></dc:creator><dc:creator>Мещеряков А.В.<irid>8415333</irid></dc:creator><dc:creator>Сазонов С.Ю.<irid>21941607</irid></dc:creator><dc:creator>Гильфанов М.Р.<irid></irid></dc:creator><prism:publicationName>Астрофизический бюллетень</prism:publicationName> <dc:publisher>САО РАН</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>78</prism:volume><prism:number>3</prism:number><prism:startingPage>294</prism:startingPage><prism:endingPage>304</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/586457990/</prism:url><prism:ID>586457990/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-18 11:38:36</created> <attachments><url>https://istina.msu.ru/download/586804493/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Представлены результаты оптической спектроскопии на 2.5-м телескопе КГО ГАИШ МГУ со спектрографом TDS (3600–7500A, R~2000) восьми сильно переменных рентгеновских источников — кандидатов в ядра активных галактик из обзора всего неба телескопа eROSITA обсерватории СРГ. По эмиссионным и абсорбционным линиям в спектрах определены красные смещения источников. Как минимум пять объектов можно отнести к сейфертовским галактикам. С помощью камеры ASTRONIRCAM проведена пробная ИК-фотометрия трех далеких квазаров с z > 5. Показано, что на диаграмме «(z−J)–(J−W1)» исследуемые далекие квазары уверенно отделяются от галактических красных и коричневых карликов. Это доказывает возможность предварительной классификациикандидатов в далекие рентгеновские квазары по ИК-цветам для дальнейшего детального спектроскопического исследования на крупных телескопах.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Нелинейная динамика проскальзывающих течений</dc:title><dc:creator>Кузнецов Е.А.<irid>10624671</irid></dc:creator><dc:creator>Михайлов Е.А.<irid>6928660</irid></dc:creator><dc:creator>Сердюков М.Г.<irid>334982048</irid></dc:creator><prism:publicationName>Известия высших учебных заведений. Радиофизика</prism:publicationName><prism:doi>10.52452/00213462_2023_66_02_145</prism:doi> <dc:publisher>Науч.-исслед. радиофиз. ин-т</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>66</prism:volume><prism:number>2-3</prism:number><prism:startingPage>145</prism:startingPage><prism:endingPage>160</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/590401435/</prism:url><prism:ID>590401435/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-04 02:29:02</created> <attachments><url>https://istina.msu.ru/download/612463187/</url></attachments></pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Электронная публикация</category><dc:title>Directional Sensitivity of the NEWSdm Experiment to Cosmic Ray Boosted Dark Matter</dc:title><dc:creator>Agafonova N.Y.<irid>328065474</irid></dc:creator><dc:creator>Alexandrov A.<irid></irid></dc:creator><dc:creator>Anokhina A.M.<irid>394331</irid></dc:creator><dc:creator>Asada T.<irid>9432442</irid></dc:creator><dc:creator>Ashikhmin V.V.<irid>90210048</irid></dc:creator><dc:creator>Boccia V.<irid>79293544</irid></dc:creator><dc:creator>Centanni D.<irid>555775956</irid></dc:creator><dc:creator>Chernyavskii M.M.<irid>394608</irid></dc:creator><dc:creator>DAmbrosio N.<irid>20541556</irid></dc:creator><dc:creator>Lellis G.De<irid></irid></dc:creator><dc:creator>Crescenzo A.Di<irid></irid></dc:creator><dc:creator>Dowdy Y.C.<irid>555775957</irid></dc:creator><dc:creator>Dmitrievski S.<irid></irid></dc:creator><dc:creator>Enikeev R.I.<irid>394599</irid></dc:creator><dc:creator>Galati G.<irid></irid></dc:creator><dc:creator>Galkin V.I.<irid>394024</irid></dc:creator><dc:creator>Golovatiuk A.<irid>555775958</irid></dc:creator><dc:creator>Gorbunov S.A.<irid></irid></dc:creator><dc:creator>Gornushkin Y.<irid>394596</irid></dc:creator><dc:creator>Guler A.M.<irid></irid></dc:creator><dc:creator>Gulyaeva V.V.<irid>365474120</irid></dc:creator><dc:creator>Iuliano A.<irid>328273532</irid></dc:creator><dc:creator>Khalikov E.V.<irid>30933205</irid></dc:creator><dc:creator>Kim S.H.<irid></irid></dc:creator><dc:creator>Konovalova N.S.<irid></irid></dc:creator><dc:creator>Krasilnikova Y.O.<irid></irid></dc:creator><dc:creator>Lauria A.<irid></irid></dc:creator><dc:creator>Lee K.Y.<irid></irid></dc:creator><dc:creator>Loschiavo V.P.<irid>459149149</irid></dc:creator><dc:creator>Managadze A.K.<irid>393516</irid></dc:creator><dc:creator>Miloi A.<irid></irid></dc:creator><dc:creator>Montesi M.C.<irid></irid></dc:creator><dc:creator>Naka T.<irid></irid></dc:creator><dc:creator>Okateva N.M.<irid>4491186</irid></dc:creator><dc:creator>Park B.D.<irid></irid></dc:creator><dc:creator>Podgrudkov D.A.<irid>350224240</irid></dc:creator><dc:creator>Polukhina N.G.<irid>30693906</irid></dc:creator><dc:creator>Roganova T.M.<irid>393396</irid></dc:creator><dc:creator>Rosa G.<irid></irid></dc:creator><dc:creator>Samoilov M.A.<irid>401745729</irid></dc:creator><dc:creator>Sadykov Z.T.<irid></irid></dc:creator><dc:creator>Saeki K.<irid>19110118</irid></dc:creator><dc:creator>Sato O.<irid></irid></dc:creator><dc:creator>Shakiryanova I.R.<irid>4491189</irid></dc:creator><dc:creator>Shchedrina T.V.<irid></irid></dc:creator><dc:creator>Shiraishi T.<irid>3293657</irid></dc:creator><dc:creator>Sohn J.Y.<irid></irid></dc:creator><dc:creator>Sotnikov A.<irid>600176661</irid></dc:creator><dc:creator>Starkov N.I.<irid></irid></dc:creator><dc:creator>Starkova E.N.<irid>428863764</irid></dc:creator><dc:creator>Strekalina D.M.<irid>555775962</irid></dc:creator><dc:creator>Tioukov V.<irid>5641128</irid></dc:creator><dc:creator>Ursov E.D.<irid>253994105</irid></dc:creator><dc:creator>Ustyuzhanin A.<irid></irid></dc:creator><dc:creator>Vasina S.<irid>86900453</irid></dc:creator><dc:creator>Voronkov R.A.<irid></irid></dc:creator><dc:creator>Yoon C.S.<irid></irid></dc:creator><prism:publicationName>ArXiv e-prints</prism:publicationName><prism:doi>10.48550/arXiv.2305.00112</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:url>http://istina.msu.ru/publications/article/555775963/</prism:url><prism:ID>555775963/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-08 20:06:36</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>We present a study of a directional search for Dark Matter boosted forward when scattered by cosmic-ray nuclei, using a module of the NEWSdm experiment. The boosted Dark Matter flux at the edge of the Earth's atmosphere is expected to be pointing to the Galactic Center, with a flux 15 to 20 times larger than in the transverse direction.The module of the NEWSdm experiment consists of a 10 kg stack of Nano Imaging Trackers, i.e.~newly developed nuclear emulsions with AgBr crystal sizes down to a few tens of nanometers. The module is installed on an equatorial telescope. The relatively long recoil tracks induced by boosted Dark Matter, combined with the nanometric granularity of the emulsion, result in an extremely low background. This makes an installation at the INFN Gran Sasso laboratory, both on the surface and underground, viable. A comparison between the two locations is made. The angular distribution of nuclear recoils induced by boosted Dark Matter in the emulsion films at the surface laboratory is expected to show an excess with a factor of 3.5 in the direction of the Galactic Center. This excess allows for a Dark Matter search with directional sensitivity. The surface laboratory configuration prevents the deterioration of the signal in the rock overburden and it emerges as the most powerful approach for a directional observation of boosted Dark Matter with high sensitivity. We show that, with this approach, a 10 kg module of the NEWSdm experiment exposed for one year at the Gran Sasso surface laboratory can probe Dark Matter masses between 1 keV/c2 and 1 GeV/c2 and cross-section values down to 10−30~cm2 with a directional sensitive search.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Исследовательская статья</category><dc:title>Deep Photometry of Suspected Gravitational Lensing Events: Potential Detection of a Cosmic String</dc:title><dc:creator>Safonova Margarita<irid>503170017</irid></dc:creator><dc:creator>Bulygin Igor I.<irid>331203292</irid></dc:creator><dc:creator>Sazhina Olga S.<irid>383035</irid></dc:creator><dc:creator>Sazhin Mikhail V.<irid>486156</irid></dc:creator><dc:creator>Hasan Priya<irid>503170020</irid></dc:creator><dc:creator>Sutaria Firoza<irid>503170018</irid></dc:creator><prism:publicationName>ArXiv e-prints</prism:publicationName><prism:doi>10.48550/arXiv.2309.11831</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>arXiv:2309.11831</prism:number><prism:url>http://istina.msu.ru/publications/article/596090717/</prism:url><prism:ID>596090717/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-22 16:57:56</created> <attachments><url>https://istina.msu.ru/download/596096887/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Cosmic strings (CS) are one-dimensional cosmological-size objects predicted in realistic models of the early Universe. Analysis of the cosmic microwave background (CMB) anisotropy data from the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck surveys revealed several CS candidates. One of the candidates, CSc-1, was found to be most reliable because of the statistically significant chains of gravitational lensing (GL) candidates in its field. We observed the brightest of the objects in the CSc-1 field, a galaxy pair SDSSJ110429.61+233150.3. The significant correlation between the spectra of the two components indicates the possible GL nature of the pair. Our simulations of observational data in the CSc-1 field shows that a large number of pairs can be explained by the complex geometry of the CS. Simulations of the SDSSJ110429 galaxy pair has shown that the observed angle between the components of the pair can be explained if the CS is strongly inclined and, possibly, bent in the image plane. In our preliminary data, we also detected the sign of the sharp isophotal edge in one image, which along with CMB and spectral data strongly suggests the possibility of a CS detection. Comments:6 pages, 4 figures, Accepted at the Bulletin de la Société Royale des Sciences de Liège, 2023</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><category>Электронная публикация</category><dc:title>Observation of collider muon neutrinos with the SND@LHC experiment</dc:title><dc:creator>Anokhina A.<irid>394331</irid></dc:creator><dc:creator>Gulyaeva V.<irid>365474120</irid></dc:creator><dc:creator>Khalikov E.<irid>30933205</irid></dc:creator><dc:creator>Podgrudkov D.<irid>350224240</irid></dc:creator><dc:creator>Roganova T.<irid>393396</irid></dc:creator><dc:creator>Samoilov M.<irid>401745729</irid></dc:creator><dc:creator>Ursov E.<irid>253994105</irid></dc:creator><dc:creator>SND Collaboration<irid>321241161</irid></dc:creator><prism:publicationName>ArXiv e-prints</prism:publicationName><prism:doi>10.48550/arXiv.2305.09383</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:url>http://istina.msu.ru/publications/article/558742537/</prism:url><prism:ID>558742537/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-17 14:34:11</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>We report the direct observation of muon neutrino interactions with the SND@LHC detector at the Large Hadron Collider. A data set of proton-proton collisions at s√=13.6TeV collected by SND@LHC in 2022 is used, corresponding to an integrated luminosity of 36.8fb−1. The search is based on information from the active electronic components of the SND@LHC detector, which covers the pseudo-rapidity region of 7.2<η<8.4, inaccessible to the other experiments at the collider. Muon neutrino candidates are identified through their charged-current interaction topology, with a track propagating through the entire length of the muon detector. After selection cuts, 8 νμ interaction candidate events remain with an estimated background of 0.076 events, yielding a significance of seven standard deviations for the observed νμ signal.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Minimum-time interception of a moving target by an isotropic rocket</dc:title><dc:creator>Buzikov Maksim E.<irid>43946174</irid></dc:creator><dc:creator>Mayer Alina M.<irid>594096510</irid></dc:creator><prism:publicationName>ArXiv e-prints</prism:publicationName><prism:doi>10.48550/ARXIV.2311.05264</prism:doi> <dc:publisher></dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:url>http://istina.msu.ru/publications/article/617837421/</prism:url><prism:ID>617837421/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-12-07 13:05:36</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>In this study, we propose an algorithmic framework for solving a class of optimal control problems. This class is associated with the minimum-time interception of moving target problems, where a plant with a given state equation must approach a moving target whose trajectory is known a priori. Our framework employs an analytical description of the distance from an arbitrary point to the reachable set of the plant. The proposed algorithm is always convergent and cannot be improved without losing the guarantee of its convergence to the correct solution for arbitrary Lipschitz continuous trajectories of the moving target. In practice, it is difficult to obtain an analytical description of the distance to the reachable set for the sophisticated state equation of the plant. Nevertheless, it was shown that the distance can be obtained for some widely used models, such as the Dubins car, in an explicit form. Finally, we illustrate the generality and effectiveness of the proposed framework for simple motions and the Dubins model.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>НОВЫЕ МАГНИТНЫЕ КОЛЛОИДНЫЕ СИСТЕМЫ НА ОСНОВЕ БИОМИМЕТИЧЕСКИХ ПОЛИКОМПЛЕКСОВ</dc:title><dc:creator>Григорян И.В.<irid>517624499</irid></dc:creator><dc:creator>Спиридонов В.В.<irid>7075082</irid></dc:creator><dc:creator>Адельянов А.М.<irid>1718917</irid></dc:creator><dc:creator>Кокшаров Ю.А.<irid>426309</irid></dc:creator><dc:creator>Потапенков К.В.<irid>9433048</irid></dc:creator><dc:creator>Таранов И.В.<irid>1685871</irid></dc:creator><dc:creator>Хомутов Г.Б.<irid>561949</irid></dc:creator><dc:creator>Ярославов А.А.<irid>410360</irid></dc:creator><prism:publicationName>Вестник Московского университета. Серия 2: Химия</prism:publicationName><prism:doi>10.55959/MSU0579-9384-2-2024-65-3-202-208</prism:doi> <dc:publisher>Издательский дом МГУ</dc:publisher><prism:publicationDate>2024</prism:publicationDate> <prism:volume>65</prism:volume><prism:number>3</prism:number><prism:startingPage>202</prism:startingPage><prism:endingPage>208</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/630212311/</prism:url><prism:ID>630212311/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>1</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2024-02-15 18:35:38</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Представлены новые коллоидные системы, имеющие перспективы использования в качестве носителей лекарственных соединений и представляющие собой полимерные комплексы на основе молекул полиакриловой кислоты разной молекулярной массы и биогенного полиамина, дополнительно модифицированные наночастицами магнитного оксида железа. Определены основные физико-химические характеристики полученных поликомплексов. Продемонстрирована возможность включения в поликомплексы лекарственного соединениядоксорубицина и исследованы магнитные свойства поликомплексов, функционализованных магнитными наночастицами оксида железа.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Стимуляция мышечных клеток с использованием микробного биотопливного элемента</dc:title><dc:creator>Вахницкая Е.С.<irid>609031431</irid></dc:creator><dc:creator>Романов А.О.<irid>60587615</irid></dc:creator><dc:creator>Базылева К.Ю.<irid>396977136</irid></dc:creator><dc:creator>Габдрахманова А.Ф.<irid></irid></dc:creator><dc:creator>Гафурова Д.Д.<irid></irid></dc:creator><dc:creator>Касаткина А.Н.<irid></irid></dc:creator><dc:creator>Гуляев Н.А.<irid></irid></dc:creator><dc:creator>Щембелов И.И.<irid>609031432</irid></dc:creator><dc:creator>Богомолов Н.М.<irid></irid></dc:creator><dc:creator>Барзаев М.К.<irid>609031433</irid></dc:creator><dc:creator>Шарикова Н.А.<irid>388719483</irid></dc:creator><prism:publicationName>Российские нанотехнологии</prism:publicationName><prism:doi>10.56304/s1992722323010156</prism:doi> <dc:publisher>НИЦ «Курчатовский институт»</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>18</prism:volume><prism:number>1</prism:number><prism:startingPage>114</prism:startingPage><prism:endingPage>120</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/609031434/</prism:url><prism:ID>609031434/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-07 14:47:13</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Рентгенодифракционный анализ и визуализация деформаций в пьезоэлектрических кристаллах и элементах на их основе</dc:title><dc:creator>Ибрагимов Э.С.<irid>281886411</irid></dc:creator><dc:creator>Пиляк Ф.С.<irid>60525004</irid></dc:creator><dc:creator>Куликов А.Г.<irid>39062480</irid></dc:creator><dc:creator>Марченков Н.В.<irid>504329074</irid></dc:creator><dc:creator>Писаревский Ю.В.<irid>1089814</irid></dc:creator><prism:publicationName>Успехи в химии и химической технологии</prism:publicationName> <dc:publisher>Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет им. Д.И. Менделеева"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>37</prism:volume><prism:number>7</prism:number><prism:startingPage>19</prism:startingPage><prism:endingPage>22</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/611150374/</prism:url><prism:ID>611150374/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-11-13 10:05:49</created> </pam:article></xhtml:head> <xhtml:body> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Hyperonic Interactions in Neutron Stars</dc:title><dc:creator>Mikheev Semyon<irid>338980174</irid></dc:creator><dc:creator>Lanskoy Dmitry<irid>407617</irid></dc:creator><dc:creator>Nasakin Artur<irid>466991320</irid></dc:creator><dc:creator>Tretyakova Tatiana<irid>1172656</irid></dc:creator><prism:publicationName>Particles</prism:publicationName><prism:doi>10.3390/particles6030054</prism:doi> <dc:publisher>MDPI</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>6</prism:volume><prism:startingPage>847</prism:startingPage><prism:endingPage>863</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/594095623/</prism:url><prism:ID>594095623/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>0</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-09-15 18:29:52</created> <attachments><url>https://istina.msu.ru/download/594095661/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>The matter of neutron stars is characterised by the density of the order of typical nuclear densities; hence, it can be described with methods of nuclear physics. However, at high densities, some effects that are absent in nuclear and hypernuclear physics can appear, and this makes neutron stars a good place for studying the properties of baryonic interactions. In the present work, we consider neutron stars consisting of nucleons, leptons and Λ hyperons with Skyrme baryonic forces.We study the character of the ΛN interactions taking place in neutron stars at high densities. In particular, we show the difference between three-body ΛNN and density-dependent ΛN forces. We also demonstrate that the Skyrme ΛN forces proportional to nuclear density are better suited for the modelling of neutron stars than the forces proportional to fractional powers of density.Finally, we emphasize the importance of the point of appearance of hyperons in a further search forparameterizations which are suitable for describing neutron stars.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Управление автоматической парковкой беспилотного автомобиля на основе моделей движения Дубинса и Ридса-Шеппа</dc:title><dc:creator>Тюленев И.Д.<irid>592844195</irid></dc:creator><dc:creator>Филимонов Н.Б.<irid>2771948</irid></dc:creator><prism:publicationName>Journal of Advanced Research in Technical Science</prism:publicationName><prism:doi>10.26160/2474-5901-2023-35-52-59</prism:doi> <dc:publisher>Индивидуальный предприниматель Жукова Елена Валерьевна</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>35</prism:number><prism:startingPage>52</prism:startingPage><prism:endingPage>59</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/563001214/</prism:url><prism:ID>563001214/</prism:ID><is_vak>0</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-05-29 02:11:05</created> <attachments><url>https://istina.msu.ru/download/593479267/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>Рассматривается задача управления автоматической парковкой беспилотного автомобиля. Даны постановка и формализация задачи управления парковкой автомобиля сучётом ограничений, обеспечивающих безопасность парковочного маневра. На основе моделей движения Дубинса и Ридса-Шеппа синтезированы оптимальные по быстродействию алгоритмы управления парковкой автомобиля. Для построения пути между двумя точкамииспользован алгоритм быстрорастущего случайного дерева RRT. Представлены результаты компьютерной апробации синтезированных алгоритмов парковки автомобиля, реализованных на языке Python с использованием математических библиотек Matplotlib и NumPy.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>СТАДИЙНОСТЬ ПРОЯВЛЕНИЯ АНОМАЛИЙ СЕЙСМИЧЕСКОГО РЕЖИМА ПЕРЕД ЗЕМЛЕТРЯСЕНИЯМИ КАМЧАТКИ, ЯПОНИИ И ИСЛАНДИИ</dc:title><dc:creator>Смирнов ВБ<irid>552793</irid></dc:creator><dc:creator>Петрушов АА<irid>153226173</irid></dc:creator><prism:publicationName>Физика Земли</prism:publicationName><prism:doi>10.31857/S0002333723050125</prism:doi> <dc:publisher>Российская академия наук</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>5</prism:number><prism:startingPage>62</prism:startingPage><prism:endingPage>78</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/579479398/</prism:url><prism:ID>579479398/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-07-21 22:58:24</created> <attachments><url>https://istina.msu.ru/download/579479408/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>DOI: 10.31857/S0002333723050125, EDN: WAGJPEПредставлены результаты выявления стадийности проявления аномалий параметров сейсмическо-го режима перед землетрясениями различных магнитуд. Под стадийностью понимается соотноше-ние времен формирования и развития аномалий различных параметров сейсмического режима. Дляанализа отобраны землетрясения в областях с двумя генеральными тектоническими типами: в зонесубдукции (Камчатка и Япония) и в рифтовой зоне (Исландия). Выбор регионов определялся, впервую очередь, доступностью и качеством региональных сейсмических каталогов. В качестве па-раметров сейсмического режима рассматривались наклон графика повторяемости и комплексныйпараметр, известный как RTL. Пространственно-временные аномалии выявлялись перед отобран-ными землетрясениями на основе известных “образов предвестников” параметров сейсмическогорежима. Сопоставление длительностей выявленных аномалий показало, что аномалии наклона гра-фика повторяемости возникают, в целом, раньше, чем аномалии RTL. Высказаны предположенияо возможной причине такой стадийности проявления аномалий. В окрестностях изученных земле-трясений оценивалось также изменение параметра концентрации сейсмогенных разрывов в преде-лах соответствующих сейсмических циклов. Сопоставление времен возникновения выявленныханомалий сейсмического режима с соответствующими этим временам значениями параметра кон-центрации сейсмогенных разрывов показало, что формирование аномалий сейсмического режимапроисходит на стадии, когда состояние системы накопившихся за время сейсмического цикла сей-смогенных разрывов практически достигло критического значения.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Об RTL-аномалии сейсмического режима перед землетрясением в Турции 06.02.2023 г</dc:title><dc:creator>Смирнов В.Б.<irid>552793</irid></dc:creator><dc:creator>Петрушов А.А.<irid>153226173</irid></dc:creator><dc:creator>Михайлов ВО<irid>7962112</irid></dc:creator><prism:publicationName>Физика Земли</prism:publicationName><prism:doi>10.31857/S0002333723060200</prism:doi> <dc:publisher>Российская академия наук</dc:publisher><prism:publicationDate>2023</prism:publicationDate><prism:number>6</prism:number><prism:startingPage>122</prism:startingPage><prism:endingPage>132</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/602382905/</prism:url><prism:ID>602382905/</prism:ID><is_vak>1</is_vak><is_WoS>1</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-10-20 00:37:25</created> <attachments><url>https://istina.msu.ru/download/608711843/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>На основе данных регионального каталога землетрясений Турции и сводного каталога ANSS для территории Турции и части Ирана проведен апостериорный анализ RTL-аномалий сейсмического режима пред разрушительным Пазарджыкским землетрясением Mw7.8 06.02.2023 г. в Турции и для сравнения перед землетрясениями Mw 7.1 23.10.2011 г. (Восточная Турция), Mw 7.3 12.11.2017 г. (Иран), М6.7 24.01.2020 г. (Восточно Анатолийский разлом). Перед Пазарджыкским землетрясением уверенно выделяется RTL аномалия с хорошо выраженными стадиями сейсмического затишья и последующей активизации вблизи эпицентра будущего землетрясения. Пространственный размер этой аномалии в полтора раза меньше размера очага Пазарджыкского землетрясения и в полтора-два раза меньше, чем размеры RTL-аномалий перед другими региональными землетрясениями с магнитудами более 7. Он соответствует размеру аномалии перед землетрясением Mw 6.7, произошедшем на том же разломе. В качестве гипотезы о причине несоответствия размера аномалии перед Пазарджыкским землетрясением Mw 7.8 размерам, характерным для землетрясений M7+, выдвинуто предположение о том, что обнаруженная RTL-аномалия отражает формирование только первого относительно небольшого сегмента очага Пазарджыкского землетрясения.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Методология применения глубоких нейронных сетей в поиске “Новой физики” на коллайдерах и статистическая интерпретация ожидаемых результатов</dc:title><dc:creator>Абасов Э.Э.<irid>407424755</irid></dc:creator><dc:creator>Белоброва М.И.<irid>373549358</irid></dc:creator><dc:creator>Волков П.В.<irid>6748173</irid></dc:creator><dc:creator>Воротников Г.А.<irid>8850785</irid></dc:creator><dc:creator>Дудко Л.В.<irid>399093</irid></dc:creator><dc:creator>Заборенко А.Д.<irid>373549359</irid></dc:creator><dc:creator>Перфилов М.А.<irid>518927</irid></dc:creator><dc:creator>Сивакова Е.С.<irid>373549360</irid></dc:creator><prism:publicationName>Ядерная физика</prism:publicationName><prism:doi>10.1134/S1063778822060023</prism:doi> <dc:publisher>ФГБУ "Издательство "Наука"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>85</prism:volume><prism:number>6</prism:number><prism:startingPage>1</prism:startingPage><prism:endingPage>14</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/484800121/</prism:url><prism:ID>484800121/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2022-08-14 19:35:17</created> </pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>В настоящей статье описываются методы применения нейронных сетей к поиску “новой физики” в коллайдерных экспериментах. Рассмотрены механизмы отбора наблюдаемых, оптимизации гиперпараметров, построения каскадов глубоких нейронных сетей. Приведены методы статистического анализа дискриминантов нейронных сетей в пакетах theta и CombinedLimit с учетом различных неопределенностей.</p> </xhtml:body> </pam:message><pam:message xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:pam="http://prismstandard.org/namespaces/pam/2.0/" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:xhtml="http://www.w3.org/1999/xhtml"><xhtml:head> <pam:article><dc:title>Сечения парциальных фотонейтронных реакций на ядре 59Co в экспериментах с тормозным g-излучением</dc:title><dc:creator>Варламов В.В.<irid>394718</irid></dc:creator><dc:creator>Давыдов А.И.<irid>17824662</irid></dc:creator><dc:creator>Мостаков И.А.<irid>412382196</irid></dc:creator><dc:creator>Орлин В.Н.<irid>519640</irid></dc:creator><prism:publicationName>Ядерная физика</prism:publicationName><prism:doi>10.31857/S0044002723050409</prism:doi> <dc:publisher>ФГБУ "Издательство "Наука"</dc:publisher><prism:publicationDate>2023</prism:publicationDate> <prism:volume>85</prism:volume><prism:number>5</prism:number><prism:startingPage>532</prism:startingPage><prism:endingPage>545</prism:endingPage><prism:url>http://istina.msu.ru/publications/article/586457002/</prism:url><prism:ID>586457002/</prism:ID><is_vak>1</is_vak><is_WoS>0</is_WoS><is_Scopus>0</is_Scopus><is_RINC>1</is_RINC><val_WoS>0</val_WoS><val_Scopus>0</val_Scopus><created>2023-08-18 10:40:14</created> <attachments><url>https://istina.msu.ru/download/586457058/</url></attachments></pam:article></xhtml:head> <xhtml:body><h1>Abstract</h1><p>С помощью экспериментально-теоретического метода оценки сечений парциальных реакций, основанного на объективных физических критериях, исследована достоверность данных по сечениям реакций (γ, 1n)и(γ, 2n) на ядре 59Co из нескольких экспериментов, выполненных на пучках тормозного γ-излучения. Установлено, что сечения парциальных реакций, полученные с помощью внесения в сечение выхода нейтронов σ(γ, xn) = σ(γ, 1n)+2σ(γ, 2n) поправок, рассчитанных по статистической теории, критериям достоверности не удовлетворяют. В рассмотренных экспериментах сечения реакции (γ, 1n) существенно недостоверно занижены, а реакции (γ, 2n) — напротив, завышены. Это очевидно обусловлено недостатками использованного метода получения информации о сечениях парциальных реакций с помощью поправок, рассчитанных по статистической теории</p> </xhtml:body> </pam:message></response>