-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathrun.sh
130 lines (113 loc) · 5.32 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/bin/bash
# Copyright 2020 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
. ./cmd.sh || exit 1;
# . ./path.sh || exit 1;
# basic settings
stage=-1 # stage to start
stop_stage=100 # stage to stop
verbose=1 # verbosity level (lower is less info)
world_size=1 # number of workers in training
distributed_init= # file path for init_process_group in distributed training
nj=16 # number of parallel jobs in feature extraction
# NOTE(kan-bayashi): renamed to conf to avoid conflict in parse_options.sh
conf=conf/ctxv2w.v1.yaml
sampling_rate=16000 # sampling frequency
num_mels=80 # number of mel basis
hop_size=160 # number of shift points
win_length=465 # window length
# speaker setting
part="all" # "clean" or "all"
# if set to "clean", use only clean data
# if set to "all", use clean + other data
# directory path setting
datadir=$PWD/data
featdir=$PWD/feats
# training related setting
tag="" # tag for directory to save model
resume="" # checkpoint path to resume training
# (e.g. <path>/<to>/checkpoint-10000steps.pkl)
# decoding related setting
checkpoint= # checkpoint path to be used for decoding
# if not provided, the latest one will be used
# (e.g. <path>/<to>/checkpoint-400000steps.pkl)
train_set="train_${part}" # name of training data directory
dev_set="dev_${part}" # name of development data directory
# eval_set="eval_${part}" # name of evaluation data directory
eval_set="eval_${part}"
# shellcheck disable=SC1091
. parse_options.sh || exit 1;
set -eo pipefail
chmod +x ctx_vec2wav/bin/train.py ctx_vec2wav/bin/decode.py
vqdir=feats/vqidx/
if [ -z "${tag}" ]; then
expdir="exp/${train_set}_$(basename "${conf}" .yaml)"
else
expdir="exp/${train_set}_${tag}"
fi
last_checkpoint="$(ls -dt "${expdir}"/*.pkl | head -1 || true)"
if [ -z $resume ]; then
resume=$last_checkpoint
fi
if [ "${stage}" -le 2 ] && [ "${stop_stage}" -ge 2 ]; then
echo "Stage 2: Network training"
[ ! -e "${expdir}" ] && mkdir -p "${expdir}"
echo "Hostname: `hostname`."
echo "CUDA Devices: $CUDA_VISIBLE_DEVICES"
echo "Training start. See the progress via ${expdir}/train.log."
${cuda_cmd} --gpu 1 "${expdir}/log/train.log" \
train.py \
--config "${conf}" \
--train-wav-scp $datadir/${train_set}/wav.scp \
--train-vqidx-scp ${featdir}/vqidx/${train_set}/feats.scp \
--train-mel-scp ${featdir}/normed_fbank/${train_set}/feats.scp \
--train-aux-scp ${featdir}/normed_ppe/${train_set}/feats.scp \
--train-num-frames ${datadir}/${train_set}/utt2num_frames \
--dev-wav-scp ${datadir}/${dev_set}/wav.scp \
--dev-vqidx-scp ${featdir}/vqidx/${dev_set}/feats.scp \
--dev-mel-scp ${featdir}/normed_fbank/${dev_set}/feats.scp \
--dev-aux-scp ${featdir}/normed_ppe/${dev_set}/feats.scp \
--dev-num-frames $datadir/${dev_set}/utt2num_frames \
--vq-codebook $vqdir/codebook.npy \
--outdir "${expdir}" \
--resume "${resume}" \
--sampling-rate ${sampling_rate} \
--hop-size ${hop_size} \
--num-mels ${num_mels} \
--win-length ${win_length} \
--verbose "${verbose}"
echo "Successfully finished training."
fi
if [ "${stage}" -le 3 ] && [ "${stop_stage}" -ge 3 ]; then
echo "Stage 3: Network decoding"
# shellcheck disable=SC2012
[ -z "${checkpoint}" ] && checkpoint="$(ls -dt "${expdir}"/*.pkl | head -1 || true)"
outdir="${expdir}/synthesis/$(basename "${checkpoint}" .pkl)"
for name in "${eval_set}"; do
[ ! -e "${outdir}/${name}" ] && mkdir -p "${outdir}/${name}"
if [ ! -e "${featdir}/normed_fbank/${name}" ]; then
mkdir -p "${featdir}/normed_fbank/${name}"
cat ${featdir}/normed_fbank/{dev_all,eval_all}/feats.scp | filter_scp.pl ${datadir}/${name}/wav.scp - | uniq > ${featdir}/normed_fbank/${name}/feats.scp
fi
if [ ! -e "${featdir}/vqidx/${name}" ]; then
mkdir -p "${featdir}/vqidx/${name}"
cat ${featdir}/vqidx/{dev_all,eval_all}/feats.scp | filter_scp.pl ${datadir}/${name}/wav.scp - | uniq > ${featdir}/vqidx/${name}/feats.scp
fi
feat-to-len.py scp:${featdir}/normed_fbank/${name}/feats.scp > ${datadir}/${name}/utt2num_frames
echo "$(wc -l ${featdir}/normed_fbank/${name}/feats.scp) utterances for decoding"
python local/build_prompt_feat.py ${datadir}/${name}/utt2num_frames ${datadir}/${name}/utt2spk ${featdir}/normed_fbank/${name}/feats.scp 300 > ${datadir}/${name}/prompt.scp
echo "Decoding start. See the progress via ${outdir}/${name}/log/decode.log."
${cuda_cmd} --gpu 1 "${outdir}/${name}/log/decode.log" \
decode.py \
--sampling-rate $sampling_rate \
--feats-scp ${featdir}/vqidx/${name}/feats.scp \
--prompt-scp ${datadir}/${name}/prompt.scp \
--num-frames ${datadir}/${name}/utt2num_frames \
--checkpoint "${checkpoint}" \
--outdir "${outdir}/${name}/wav" \
--verbose "${verbose}"
echo "Successfully finished decoding of ${name} set."
done
echo "Successfully finished decoding."
fi
echo "Finished."