-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer4.py
215 lines (182 loc) · 7.93 KB
/
transformer4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.sampler import WeightedRandomSampler
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MultiLabelBinarizer
import pickle
import argparse
from nltk.corpus import wordnet
import matplotlib.pyplot as plt
# Load processed dataset
def load_dataset():
dataset = np.load("filtered_dataset.npz")
return dataset['user_inputs'], dataset['keywords']
# Dataset definition
class KeywordDataset(Dataset):
def __init__(self, inputs, labels):
self.inputs = torch.tensor(inputs, dtype=torch.long)
self.labels = torch.tensor(labels, dtype=torch.float)
def __len__(self):
return len(self.inputs)
def __getitem__(self, idx):
return self.inputs[idx], self.labels[idx]
# Compute weights for imbalanced training data
def compute_sample_weights(labels):
class_counts = np.sum(labels, axis=0)
total_samples = len(labels)
class_weights = {cls: total_samples / count for cls, count in enumerate(class_counts) if count > 0}
sample_weights = [np.mean([class_weights[idx] for idx, value in enumerate(label) if value > 0]) for label in labels]
return sample_weights
# Transformer model definition
class TransformerModel(nn.Module):
def __init__(self, vocab_size, embedding_dim, num_keywords, num_heads, num_encoder_layers, dropout_rate, max_sequence_length):
super(TransformerModel, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.positional_encoding = nn.Parameter(torch.zeros(1, max_sequence_length, embedding_dim))
self.encoder = nn.TransformerEncoder(
nn.TransformerEncoderLayer(
d_model=embedding_dim, nhead=num_heads, dropout=dropout_rate
),
num_layers=num_encoder_layers
)
self.fc = nn.Linear(embedding_dim, num_keywords)
def forward(self, x):
embedded = self.embedding(x) + self.positional_encoding[:, :x.size(1), :]
encoded = self.encoder(embedded.permute(1, 0, 2))
x = self.fc(encoded.mean(dim=0))
return x # No Sigmoid here, BCEWithLogitsLoss will apply it internally
# Preprocess input for testing
def preprocess_input(input_text, word_to_index, max_sequence_length):
unk_index = word_to_index.get("<UNK>", 0)
tokens = input_text.lower().split()
sequence = [word_to_index.get(word, unk_index) for word in tokens]
if len(sequence) < max_sequence_length:
sequence += [0] * (max_sequence_length - len(sequence))
else:
sequence = sequence[:max_sequence_length]
return torch.tensor([sequence], dtype=torch.long)
# Predict keywords
def predict_keywords(model, input_text, word_to_index, mlb, max_sequence_length, threshold=0.5):
input_sequence = preprocess_input(input_text, word_to_index, max_sequence_length)
with torch.no_grad():
logits = model(input_sequence).squeeze(0).numpy()
print(f"Prediction Logits: {logits}")
binary_predictions = (logits > threshold).astype(int).reshape(1, -1)
predicted_keywords = mlb.inverse_transform(binary_predictions)
return predicted_keywords
# Train the model
def train_model():
# Load dataset
padded_user_inputs, binary_keywords = load_dataset()
# Split data
X_train, X_val, y_train, y_val = train_test_split(
padded_user_inputs, binary_keywords, test_size=0.2, random_state=42
)
# Compute weights and create sampler
train_sample_weights = compute_sample_weights(y_train)
sampler = WeightedRandomSampler(train_sample_weights, num_samples=len(train_sample_weights), replacement=True)
# Create DataLoader
batch_size = 32
train_dataset = KeywordDataset(X_train, y_train)
val_dataset = KeywordDataset(X_val, y_val)
train_loader = DataLoader(train_dataset, batch_size=batch_size, sampler=sampler)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# Model initialization
vocab_size = padded_user_inputs.max() + 1
num_keywords = binary_keywords.shape[1]
max_sequence_length = padded_user_inputs.shape[1]
model = TransformerModel(
vocab_size=vocab_size,
embedding_dim=128, # Reduced embedding_dim
num_keywords=num_keywords,
num_heads=4, # Reduced number of heads
num_encoder_layers=4, # Reduced layers
dropout_rate=0.3,
max_sequence_length=max_sequence_length
)
# Loss function and optimizer
criterion = nn.BCEWithLogitsLoss() # Using BCEWithLogitsLoss
optimizer = optim.AdamW(model.parameters(), lr=0.0005)
# Learning rate scheduler
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.5)
# Training loop
num_epochs = 20
train_losses, val_losses = [], []
for epoch in range(num_epochs):
model.train()
train_loss = 0.0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
# Validation loop
val_loss = 0.0
model.eval()
with torch.no_grad():
for inputs, labels in val_loader:
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
# Track the losses
train_losses.append(train_loss / len(train_loader))
val_losses.append(val_loss / len(val_loader))
scheduler.step(val_loss) # Adjust learning rate based on validation loss
print(f"Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss/len(train_loader):.4f}, Val Loss: {val_loss/len(val_loader):.4f}")
# Plot the loss curves
plt.plot(range(num_epochs), train_losses, label='Train Loss')
plt.plot(range(num_epochs), val_losses, label='Val Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()
# Save model
torch.save(model.state_dict(), "optimized_transformer_model.pth")
print("Model saved as 'optimized_transformer_model.pth'")
# Test the model
def test_model(input_text):
# Load dataset and model
dataset = np.load("filtered_dataset.npz")
padded_user_inputs = dataset['user_inputs']
binary_keywords = dataset['keywords']
with open("tokenizer.pkl", "rb") as f:
word_to_index = pickle.load(f)
with open("mlb.pkl", "rb") as f:
mlb = pickle.load(f)
# Model initialization
vocab_size = padded_user_inputs.max() + 1
num_keywords = binary_keywords.shape[1]
max_sequence_length = padded_user_inputs.shape[1]
model = TransformerModel(
vocab_size=vocab_size,
embedding_dim=128, # Same settings as in training
num_keywords=num_keywords,
num_heads=4,
num_encoder_layers=4,
dropout_rate=0.3,
max_sequence_length=max_sequence_length
)
# Load model weights
model.load_state_dict(torch.load("optimized_transformer_model.pth"))
model.eval()
# Predict keywords
predicted_keywords = predict_keywords(model, input_text, word_to_index, mlb, max_sequence_length)
print(f"Input Text: {input_text}")
print(f"Predicted Keywords: {predicted_keywords}")
# Argument parsing
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--train", action="store_true", help="Train the model")
parser.add_argument("--test", type=str, help="Test the model with an input text")
args = parser.parse_args()
if args.train:
train_model()
elif args.test:
test_model(args.test)
else:
print("Please specify --train or --test <input_text>")