-
Notifications
You must be signed in to change notification settings - Fork 295
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
optimizer selection #115
Comments
Sorry, AdamW is right. We will update our paper. |
你好,想接着再问一下为什么可以实现任意upscale的sr 生成吗?我看了paper没有太懂这一步,我知道lq经过preprocessmodel之后变成condition,再经过vae encode成latent,model根据latent和xt(随机noise)生成高清sr,但是我不太懂为什么这个sampler可以对不同尺寸不同upscale都适用,想请您讲解一下原因?多谢多谢! |
根本原因是SD的UNet可以处理任意大小的latent z,具体一点的话是任意的长宽为8的倍数的latent z。在DiffBIR中condition latent会与z进行concat,所以condition latent的大小决定了z的大小。因此当condition latent的长宽为8的倍数时,UNet可以正常运行。由于VAE降采样8倍,这个条件等价于condition的长宽为64的倍数。在代码中我们也有一个步骤是把condition padding到64的倍数。如果我没说清楚的话,欢迎继续提问。 |
好滴好滴,谢谢您的讲解。假如我做inference时input img是128x128,upscale 4,那么condition img就是128x4=512,对应的经过vae endocder之后的condition latent就是512//8=64,此时的condition latent 维度为64,需要是8的倍数以满足sd unet(只能处理长宽为8的倍数的latent z),想请问您我的理解对吗?就是先是vae进行八倍降采样,降采样之后的latent z需要也是八的倍数满足sd unet latent z(也要是八的倍数)。 |
是这样的。 |
好滴好滴,谢谢! |
hi, thanks for this excellent work. I have noticed that in the code of train-stage1.py line 106, the optimizer is AdamW
opt = torch.optim.AdamW(
swinir.parameters(), lr=cfg.train.learning_rate,
weight_decay=0
)
but in the paper, 4.1 implemntations you mention adam is utilized, could you please clarify it is adam or adamW?
Thanks!
The text was updated successfully, but these errors were encountered: