-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmodel_GatedFPN_newbaseline.py
92 lines (81 loc) · 5.57 KB
/
model_GatedFPN_newbaseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
import torch.nn.functional as F
from torch import nn
from torchvision import models
class GateNet(nn.Module):
def __init__(self):
super(GateNet, self).__init__()
################################vgg16#######################################
feats = list(models.vgg16_bn(pretrained=True).features.children())
self.conv1 = nn.Sequential(*feats[:6])
self.conv2 = nn.Sequential(*feats[6:13])
self.conv3 = nn.Sequential(*feats[13:23])
self.conv4 = nn.Sequential(*feats[23:33])
self.conv5 = nn.Sequential(*feats[33:43])
################################Gate#######################################
self.attention_feature5 = nn.Sequential(nn.Conv2d(64+32, 1, kernel_size=3, padding=1))
self.attention_feature4 = nn.Sequential(nn.Conv2d(128+64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.PReLU(),
nn.Conv2d(64, 1, kernel_size=3, padding=1))
self.attention_feature3 = nn.Sequential(nn.Conv2d(256+128, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(),
nn.Conv2d(128, 1, kernel_size=3, padding=1))
self.attention_feature2 = nn.Sequential(nn.Conv2d(512+256, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU(),
nn.Conv2d(256, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.PReLU(),
nn.Conv2d(64, 1, kernel_size=3, padding=1))
self.attention_feature1 = nn.Sequential(nn.Conv2d(512+512, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.PReLU(),
nn.Conv2d(512, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU(),
nn.Conv2d(128, 1, kernel_size=3, padding=1))
###############################Transition Layer########################################
self.dem1 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.PReLU())
self.dem2 = nn.Sequential(nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU())
self.dem3 = nn.Sequential(nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU())
self.dem4 = nn.Sequential(nn.Conv2d(128, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.PReLU())
self.dem5 = nn.Sequential(nn.Conv2d(64, 32, kernel_size=3, padding=1), nn.BatchNorm2d(32), nn.PReLU())
################################FPN branch#######################################
self.output1 = nn.Sequential(nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.PReLU())
self.output2 = nn.Sequential(nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.PReLU())
self.output3 = nn.Sequential(nn.Conv2d(128, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.PReLU())
self.output4 = nn.Sequential(nn.Conv2d(64, 32, kernel_size=3, padding=1),nn.BatchNorm2d(32), nn.PReLU())
self.output5 = nn.Sequential(nn.Conv2d(32, 1, kernel_size=3, padding=1))
for m in self.modules():
if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout):
m.inplace = True
def forward(self, x):
input = x
B,_,_,_ = input.size()
################################Encoder block#######################################
E1 = self.conv1(x)
E2 = self.conv2(E1)
E3 = self.conv3(E2)
E4 = self.conv4(E3)
E5 = self.conv5(E4)
################################Transition Layer#######################################
T5 = self.dem1(E5)
T4 = self.dem2(E4)
T3 = self.dem3(E3)
T2 = self.dem4(E2)
T1 = self.dem5(E1)
################################Gated FPN#######################################
G5 = self.attention_feature1(torch.cat((E5,T5),1))
G5 = F.adaptive_avg_pool2d(F.sigmoid(G5),1)
D5 = self.output1(G5[:, 0,:,:].unsqueeze(1).repeat(1,512,1,1)*T5)
G4 = self.attention_feature2(torch.cat((E4,F.upsample(D5, size=E4.size()[2:], mode='bilinear')),1))
G4 = F.adaptive_avg_pool2d(F.sigmoid(G4),1)
D4 = self.output2(F.upsample(D5, size=E4.size()[2:], mode='bilinear')+G4[:, 0,:,:].unsqueeze(1).repeat(1,256,1,1)*T4)
G3 = self.attention_feature3(torch.cat((E3,F.upsample(D4, size=E3.size()[2:], mode='bilinear')),1))
G3 = F.adaptive_avg_pool2d(F.sigmoid(G3),1)
D3 = self.output3(F.upsample(D4, size=E3.size()[2:], mode='bilinear')+G3[:, 0,:,:].unsqueeze(1).repeat(1,128,1,1)*T3)
G2 = self.attention_feature4(torch.cat((E2,F.upsample(D3, size=E2.size()[2:], mode='bilinear')),1))
G2 = F.adaptive_avg_pool2d(F.sigmoid(G2),1)
D2 = self.output4(F.upsample(D3, size=E2.size()[2:], mode='bilinear')+G2[:, 0,:,:].unsqueeze(1).repeat(1,64,1,1)*T2)
G1 = self.attention_feature5(torch.cat((E1,F.upsample(D2, size=E1.size()[2:], mode='bilinear')),1))
G1 = F.adaptive_avg_pool2d(F.sigmoid(G1),1)
D1 = self.output5(F.upsample(D2, size=E1.size()[2:], mode='bilinear')+G1[:, 0,:,:].unsqueeze(1).repeat(1,32,1,1)*T1)
output_fpn = F.upsample(D1, size=input.size()[2:], mode='bilinear')
#######################################################################
if self.training:
return output_fpn
return F.sigmoid(output_fpn)
if __name__ == "__main__":
model = GateNet()
input = torch.autograd.Variable(torch.randn(4, 3, 384, 384))
output = model(input)