-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
262 lines (215 loc) · 12.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import argparse
import os
import torch
import torch.nn.functional as F
import datetime
from model.DBS_group_prompt import Spider_ConvNeXt,Spider_Swin
from utils.dataset_rgb_strategy2 import SalObjDataset
from utils.utils import adjust_lr, AvgMeter
import torch.nn as nn
from torch.cuda import amp
import torch.distributed as dist
from contextlib import contextmanager
import torch.utils.data as data
def get_loader(image_root, gt_root, batchsize, trainsize):
dataset = SalObjDataset(image_root, gt_root, trainsize)
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
data_loader = data.DataLoader(dataset=dataset,
batch_size=batchsize,
shuffle=False,
num_workers=12,
pin_memory=True,
sampler=sampler)
return data_loader, sampler
def structure_loss(pred, mask):
weit = 1 + 5 * torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask)
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduction='none')
wbce = (weit * wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3))
pred = torch.sigmoid(pred)
inter = ((pred * mask) * weit).sum(dim=(2, 3))
union = ((pred + mask) * weit).sum(dim=(2, 3))
wiou = 1 - (inter + 1) / (union - inter + 1)
return (wbce + wiou).mean()
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_master():
return get_rank() == 0
@contextmanager
def torch_distributed_zero_first(rank: int):
"""Decorator to make all processes in distributed training wait for each local_master to do something."""
if is_dist_avail_and_initialized() and rank not in [-1, 0]:
torch.distributed.barrier()
# 这里的用法其实就是协程的一种哦。
yield
if is_dist_avail_and_initialized() and rank == 0:
torch.distributed.barrier()
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=50, help='epoch number')
parser.add_argument('--lr_gen', type=float, default=1e-4, help='learning rate')
parser.add_argument('--batchsize', type=int, default=16, help='training batch size')
parser.add_argument('--trainsize', type=int, default=384, help='training dataset size')
parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin')
parser.add_argument('--decay_rate', type=float, default=0.9, help='decay rate of learning rate')
parser.add_argument('--decay_epoch', type=int, default=30, help='every n epochs decay learning rate')
parser.add_argument('-beta1_gen', type=float, default=0.5, help='beta of Adam for generator')
parser.add_argument('--weight_decay', type=float, default=0.001, help='weight_decay')
parser.add_argument('--feat_channel', type=int, default=64, help='reduced channel of saliency feat')
return parser.parse_args()
def train():
opt = get_args()
print('Generator Learning Rate: {}'.format(opt.lr_gen))
print('分布式开始初始化...')
distributed = int(os.environ["WORLD_SIZE"]) > 1
local_rank = int(os.environ.get("LOCAL_RANK", 0))
world_size = int(os.environ["WORLD_SIZE"])
torch.cuda.set_device(local_rank)
dist.init_process_group(backend="nccl", world_size=world_size, init_method="env://")
print('分布式初始化完成!')
is_master = (distributed and (local_rank == 0)) or (not distributed)
## load data
image_sod_root = "/root/autodl-tmp/datasets/dbs/data_path/DUTS-TR_img.txt"
image_cod_root = "/root/autodl-tmp/datasets/dbs/data_path/COD_train_img.txt"
image_shadow_root = "/root/autodl-tmp/datasets/dbs/data_path/Shadow_img.txt"
image_transparent_root = "/root/autodl-tmp/datasets/dbs/data_path/transparent_img.txt"
image_polyp_root = "/root/autodl-tmp/datasets/dbs/data_path/Polyp_train_img.txt"
image_covid_root = "/root/autodl-tmp/datasets/dbs/data_path/COVID-19_img.txt"
image_breast_root = "/root/autodl-tmp/datasets/dbs/data_path/breast_train_img.txt"
image_skin_root = "/root/autodl-tmp/datasets/dbs/data_path/skin_img.txt"
gt_sod_root = "/root/autodl-tmp/datasets/dbs/data_path/DUTS-TR_gt.txt"
gt_cod_root = "/root/autodl-tmp/datasets/dbs/data_path/COD_train_gt.txt"
gt_shadow_root = "/root/autodl-tmp/datasets/dbs/data_path/Shadow_gt.txt"
gt_transparent_root = "/root/autodl-tmp/datasets/dbs/data_path/transparent_gt.txt"
gt_polyp_root = "/root/autodl-tmp/datasets/dbs/data_path/Polyp_train_gt.txt"
gt_covid_root = "/root/autodl-tmp/datasets/dbs/data_path/COVID-19_gt.txt"
gt_breast_root = "/root/autodl-tmp/datasets/dbs/data_path/breast_train_gt.txt"
gt_skin_root = "/root/autodl-tmp/datasets/dbs/data_path/skin_gt.txt"
train_sod_loader, train_sod_sampler = get_loader(image_sod_root, gt_sod_root, batchsize=opt.batchsize, trainsize=opt.trainsize)
train_cod_loader, train_cod_sampler = get_loader(image_cod_root, gt_cod_root, batchsize=opt.batchsize, trainsize=opt.trainsize)
train_shadow_loader, train_shadow_sampler = get_loader(image_shadow_root, gt_shadow_root, batchsize=opt.batchsize, trainsize=opt.trainsize)
train_transparent_loader, train_transparent_sampler = get_loader(image_transparent_root, gt_transparent_root, batchsize=opt.batchsize, trainsize=opt.trainsize)
train_polyp_loader, train_polyp_sampler = get_loader(image_polyp_root, gt_polyp_root, batchsize=opt.batchsize, trainsize=opt.trainsize)
train_covid_loader, train_covid_sampler = get_loader(image_covid_root, gt_covid_root, batchsize=opt.batchsize, trainsize=opt.trainsize)
train_breast_loader, train_breast_sampler = get_loader(image_breast_root, gt_breast_root, batchsize=opt.batchsize, trainsize=opt.trainsize)
train_skin_loader, train_skin_sampler = get_loader(image_skin_root, gt_skin_root, batchsize=opt.batchsize, trainsize=opt.trainsize)
total_step = len(train_sod_loader)
size_rates = [1] # multi-scale training
use_fp16 = True
save_path = './saved_model/Spider_Swin_model'
with torch_distributed_zero_first(rank=local_rank):
os.makedirs(save_path, exist_ok=True)
log_path = os.path.join(save_path,str(datetime.datetime.now()) + '.txt')
if is_master:
open(log_path, 'w')
print("开始初始化模型,优化器...")
generator = Spider_Swin()
generator.cuda()
generator_optimizer = torch.optim.Adam(generator.parameters(), opt.lr_gen)
scaler = amp.GradScaler(enabled=use_fp16)
generator = nn.parallel.DistributedDataParallel(
generator,
device_ids=[local_rank],
output_device=local_rank,
find_unused_parameters=True
)
print("Start Training...")
for epoch in range(1, opt.epoch + 1):
train_sod_sampler.set_epoch(epoch)
train_cod_sampler.set_epoch(epoch)
train_shadow_sampler.set_epoch(epoch)
train_transparent_sampler.set_epoch(epoch)
train_polyp_sampler.set_epoch(epoch)
train_covid_sampler.set_epoch(epoch)
train_breast_sampler.set_epoch(epoch)
train_skin_sampler.set_epoch(epoch)
generator.train()
loss_record = AvgMeter()
print('Learning Rate: {}'.format(generator_optimizer.param_groups[0]['lr']))
for i, (
(image_sod, gt_sod),
(image_cod, gt_cod),
(image_shadow, gt_shadow),
(image_transparent, gt_transparent),
(image_polyp, gt_polyp),
(image_covid, gt_covid),
(image_breast, gt_breast),
(image_skin, gt_skin),
) in enumerate(zip(
train_sod_loader,
train_cod_loader,
train_shadow_loader,
train_transparent_loader,
train_polyp_loader,
train_covid_loader,
train_breast_loader,
train_skin_loader,
), start=1):
# 4,6,3,H,W
images = torch.stack([image_sod, image_cod, image_shadow, image_transparent, image_polyp, image_covid, image_breast, image_skin], dim=1)
gts = torch.stack([gt_sod, gt_cod, gt_shadow, gt_transparent, gt_polyp, gt_covid, gt_breast, gt_skin], dim=1)
images = images.cuda()
gts = gts.cuda()
recurrent_set = 4
batch_set = gt_sod.shape[0] // recurrent_set
for rate in size_rates:
for curr_idx in range(recurrent_set):
# 6,3,H,W
query_image = images[curr_idx*batch_set:(curr_idx+1)*batch_set]
query_gt = gts[curr_idx*batch_set:(curr_idx+1)*batch_set]
# 3,6,3,H,W, skip the curr_idx-th sample
support_images = torch.cat([images[:curr_idx*batch_set], images[(curr_idx+1)*batch_set:]], dim=0)
support_gts = torch.cat([gts[:curr_idx*batch_set], gts[(curr_idx+1)*batch_set:]], dim=0)
# multi-scale training samples
trainsize = int(round(opt.trainsize * rate / 32) * 32)
if rate != 1:
query_image = F.upsample(query_image, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
query_gt = F.upsample(query_gt, size=(trainsize, trainsize), mode='bilinear', align_corners=True)
with amp.autocast(enabled=use_fp16):
support_images = support_images.permute(1, 0, 2, 3, 4) # => 6,3,3,H,W
support_gts = support_gts.permute(1, 0, 2, 3, 4) # => 6,3,3,H,W
query_image = query_image.permute(1, 0, 2, 3, 4)
query_image = query_image.reshape(-1,3,image_sod.shape[2],image_sod.shape[3])
query_gt = query_gt.permute(1, 0, 2, 3, 4)
query_gt = query_gt.reshape(-1,1,image_sod.shape[2],image_sod.shape[3])
# print(query_image.shape,support_images[0].shape)
output_fpn = generator(query_image, support_images,support_gts) # 6,6,H,W
loss1 = structure_loss(output_fpn[0:batch_set, 0:1], query_gt[0:batch_set])
loss2 = structure_loss(output_fpn[batch_set:batch_set*2, 1:2], query_gt[batch_set:batch_set*2])
loss3 = structure_loss(output_fpn[batch_set*2:batch_set*3, 2:3], query_gt[batch_set*2:batch_set*3])
loss4 = structure_loss(output_fpn[batch_set*3:batch_set*4, 3:4], query_gt[batch_set*3:batch_set*4])
loss5 = structure_loss(output_fpn[batch_set*4:batch_set*5, 4:5], query_gt[batch_set*4:batch_set*5])
loss6 = structure_loss(output_fpn[batch_set*5:batch_set*6, 5:6], query_gt[batch_set*5:batch_set*6])
loss7 = structure_loss(output_fpn[batch_set*6:batch_set*7, 6:7], query_gt[batch_set*6:batch_set*7])
loss8 = structure_loss(output_fpn[batch_set*7:batch_set*8, 7:8], query_gt[batch_set*7:batch_set*8])
loss = 1*(loss1 + loss2 + loss3 + loss4 + loss5 + loss6 + loss7 + loss8)
generator_optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(generator_optimizer)
scaler.update()
if rate == 1:
loss_record.update(loss.data, opt.batchsize)
if is_master:
if i % 10 == 0 or i == total_step:
print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], gen Loss: {:.4f}'.
format(datetime.datetime.now(), epoch, opt.epoch, i, total_step, loss_record.show()))
log = ('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], gen Loss: {:.4f}'.
format(datetime.datetime.now(), epoch, opt.epoch, i, total_step, loss_record.show()))
open(log_path, 'a').write(log + '\n')
adjust_lr(generator_optimizer, opt.lr_gen, epoch, opt.decay_rate, opt.decay_epoch)
if is_master:
if epoch % 5 == 0:
torch.save(generator.state_dict(), save_path + 'Model' + '_%d' % epoch + '_gen.pth')
if epoch % opt.epoch == 0:
torch.save(generator.state_dict(), save_path + 'Model' + '_%d' % epoch + '_gen.pth')
if __name__ == '__main__':
# freeze_support()
train()
# os.system("/usr/bin/shutdown")