-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbldg_ff_train.py
174 lines (142 loc) · 5.7 KB
/
bldg_ff_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import pickle
from tqdm import tqdm, trange
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
from dataset import create_building_splits, create_comparison_building_splits
from models import ContrastiveNet, FeedforwardNet
def train_job(lm, epochs, batch_size, co_suffix="", seed=0):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def ff_loss(pred, label):
return F.cross_entropy(pred, label)
# Create datasets
train_ds, val_ds, test_ds = create_comparison_building_splits(
"./building_data/comparison_data/" + lm + "_gt", device=device)
# Create dataloaders
train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=batch_size, shuffle=True)
test_dl = DataLoader(test_ds, batch_size=batch_size, shuffle=True)
output_size = len(train_ds.building_list)
ff_net = FeedforwardNet(1024, output_size)
ff_net.to(device)
optimizer = torch.optim.Adam(ff_net.parameters(),
lr=0.0001,
weight_decay=0.001)
loss_fxn = ff_loss
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=20,
gamma=0.99)
train_losses = []
val_losses = []
train_acc = []
val_acc = []
desc = ""
torch.manual_seed(seed)
with trange(epochs) as pbar:
for epoch in pbar:
train_epoch_loss = []
val_epoch_loss = []
train_epoch_acc = []
val_epoch_acc = []
for batch_idx, (query_em, label) in enumerate(train_dl):
pred = ff_net(query_em)
loss = loss_fxn(pred, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_epoch_loss.append(loss.item())
accuracy = ((torch.argmax(pred, dim=1) == label) * 1.0).mean()
train_epoch_acc.append(accuracy)
if batch_idx % 100 == 0:
pbar.set_description((desc).rjust(20))
scheduler.step()
train_losses.append(torch.mean(torch.tensor(train_epoch_loss)))
train_acc.append(torch.mean(torch.tensor(train_epoch_acc)))
for batch_idx, (query_em, label) in enumerate(val_dl):
with torch.no_grad():
pred = ff_net(query_em)
loss = loss_fxn(pred, label)
val_epoch_loss.append(loss.item())
accuracy = ((torch.argmax(pred, dim=1) == label) *
1.0).mean()
val_epoch_acc.append(accuracy)
if batch_idx % 100 == 0:
desc = (f"{np.mean(np.array(train_epoch_loss)):6.4}" +
", " + f"{accuracy.item():6.4}")
pbar.set_description((desc).rjust(20))
val_losses.append(torch.mean(torch.tensor(val_epoch_loss)))
val_acc.append(torch.mean(torch.tensor(val_epoch_acc)))
test_loss, test_acc = [], []
test_acc_by_class = {bldg: [0, 0] for bldg in test_ds.building_list}
for batch_idx, (query_em, label) in enumerate(test_dl):
with torch.no_grad():
pred = ff_net(query_em)
loss = loss_fxn(pred, label)
test_loss.append(loss.item())
accuracy = ((torch.argmax(pred, dim=1) == label) * 1.0).mean()
test_acc.append(accuracy)
for bldg_idx, bldg in enumerate(test_ds.building_list):
bldg_mask = label == bldg_idx
num_bldg = (bldg_mask * 1).sum()
num_corr = (
(torch.argmax(pred, dim=1)[bldg_mask] == bldg_idx) *
1).sum()
test_acc_by_class[bldg][0] += num_corr
test_acc_by_class[bldg][1] += num_bldg
print("test loss:", torch.mean(torch.tensor(test_loss)))
print("test acc:", torch.mean(torch.tensor(test_acc)))
print(test_acc_by_class)
return train_losses, val_losses, train_acc, val_acc, test_loss, test_acc
if __name__ == "__main__":
(
train_losses_list,
val_losses_list,
train_acc_list,
val_acc_list,
test_loss_list,
test_acc_list,
) = (
[],
[],
[],
[],
[],
[],
)
for lm in ["RoBERTa-large"]:
print("Starting:", lm)
co_suffix = "_gt"
(
train_losses,
val_losses,
train_acc,
val_acc,
test_loss,
test_acc,
) = train_job(lm, 100, 512, co_suffix=co_suffix)
train_losses_list.append(train_losses)
val_losses_list.append(val_losses)
train_acc_list.append(train_acc)
val_acc_list.append(val_acc)
test_loss_list.append(test_loss)
test_acc_list.append(test_acc)
pickle.dump(
train_losses_list,
open("./bldg_ff_results/comparison_results/train_losses.pkl", "wb"))
pickle.dump(
train_acc_list,
open("./bldg_ff_results/comparison_results/train_acc.pkl", "wb"))
pickle.dump(
val_losses_list,
open("./bldg_ff_results/comparison_results/val_losses.pkl", "wb"))
pickle.dump(val_acc_list,
open("./bldg_ff_results/comparison_results/val_acc.pkl", "wb"))
pickle.dump(
test_loss_list,
open("./bldg_ff_results/comparison_results/test_loss.pkl", "wb"))
pickle.dump(
test_acc_list,
open("./bldg_ff_results/comparison_results/test_acc.pkl", "wb"))