-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontrastive_label_space_test.py
138 lines (109 loc) · 4.94 KB
/
contrastive_label_space_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import pickle
from tqdm import tqdm, trange
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
import torch.nn.functional as F
from dataset import FinetuningDataset
from models import ContrastiveNet, FeedforwardNet
def train_job(lm, label_set, epochs, batch_size, co_suffix="", seed=0):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Create datasets
ds = FinetuningDataset(lm, label_set, co_suffix)
train_ds, val_ds, _ = ds.create_split(0.8, 0.2)
test_ds = FinetuningDataset(lm, "nyuClass", co_suffix)
# Create dataloaders
train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=batch_size, shuffle=True)
test_dl = DataLoader(test_ds, batch_size=batch_size, shuffle=True)
embedding_size = 256
query_net = FeedforwardNet(1024, embedding_size) # TODO: Try other values
label_net = FeedforwardNet(1024, embedding_size) # TODO: Try other values
query_net.to(device)
label_net.to(device)
label_embeddings = torch.load("./label_embeddings/" + lm + ".pt")
# Current best: 0.7018 - LR=0.00001, WD=0.0001, SS=20, G=0.99
params = params = list(query_net.parameters()) + list(
label_net.parameters())
optimizer = torch.optim.Adam(params, lr=0.00001, weight_decay=0.001)
def contrastive_loss(pred, labels):
return F.cross_entropy(pred, labels)
loss_fxn = contrastive_loss
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=20,
gamma=0.99)
train_losses = []
val_losses = []
train_acc = []
val_acc = []
desc = ""
torch.manual_seed(seed)
with trange(epochs) as pbar:
for epoch in pbar:
train_epoch_loss = []
val_epoch_loss = []
train_epoch_acc = []
val_epoch_acc = []
for batch_idx, (query_em, _, label) in enumerate(train_dl):
embed1 = query_net(query_em)
embed2 = label_net(label_embeddings)
pred = embed1 @ embed2.T
loss = loss_fxn(pred, label)
loss.backward()
optimizer.step()
train_epoch_loss.append(loss.item())
accuracy = ((torch.argmax(pred, dim=1) == label) * 1.0).mean()
train_epoch_acc.append(accuracy)
if batch_idx % 100 == 0:
pbar.set_description((desc).rjust(20))
scheduler.step()
train_losses.append(torch.mean(torch.tensor(train_epoch_loss)))
train_acc.append(torch.mean(torch.tensor(train_epoch_acc)))
for batch_idx, (query_em, _, label) in enumerate(val_dl):
with torch.no_grad():
embed1 = query_net(query_em)
embed2 = label_net(label_embeddings)
pred = embed1 @ embed2.T
loss = loss_fxn(pred, label)
val_epoch_loss.append(loss.item())
accuracy = ((torch.argmax(pred, dim=1) == label) *
1.0).mean()
val_epoch_acc.append(accuracy)
if batch_idx % 100 == 0:
desc = (f"{np.mean(np.array(train_epoch_loss)):6.4}" +
", " + f"{accuracy.item():6.4}")
pbar.set_description((desc).rjust(20))
val_losses.append(torch.mean(torch.tensor(val_epoch_loss)))
val_acc.append(torch.mean(torch.tensor(val_epoch_acc)))
test_loss, test_acc = [], []
for batch_idx, (query_em, _, label) in enumerate(test_dl):
with torch.no_grad():
embed1 = query_net(query_em)
embed2 = label_net(label_embeddings)
pred = embed1 @ embed2.T
loss = loss_fxn(pred, label)
test_loss.append(loss.item())
accuracy = ((torch.argmax(pred, dim=1) == label) * 1.0).mean()
test_acc.append(accuracy)
print("test loss:", torch.mean(torch.tensor(test_loss)))
print("test acc:", torch.mean(torch.tensor(test_acc)))
return train_losses, val_losses, train_acc, val_acc, test_loss, test_acc
if __name__ == "__main__":
# Train on mpcat40, test on nyuClass
for lm in ["RoBERTa-large", "BERT-large"]:
for label_set in ["mpcat40"]:
for use_gt in [True, False]:
print("Starting:", lm, label_set, "use_gt =", use_gt)
co_suffix = "" if use_gt else "_gpt_j_co"
(
train_losses,
val_losses,
train_acc,
val_acc,
test_loss,
test_acc,
) = train_job(lm, label_set, 100, 512, co_suffix=co_suffix)