-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathff_train.py
163 lines (137 loc) · 5.79 KB
/
ff_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import pickle
from tqdm import tqdm, trange
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
from dataset import FinetuningDataset, create_room_splits
from models import ContrastiveNet, FeedforwardNet
def train_job(lm, label_set, use_gt, epochs, batch_size, seed=0):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.manual_seed(seed)
def ff_loss(pred, label):
return F.cross_entropy(pred, label)
# Create datasets
suffix = lm + "_" + label_set + "_useGT_" + str(use_gt) + "_502030"
path_to_data = os.path.join("./data/", suffix)
train_ds, val_ds, test_ds = create_room_splits(path_to_data, device="cuda")
# Create dataloaders
train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=batch_size, shuffle=True)
test_dl = DataLoader(test_ds, batch_size=1, shuffle=True)
output_size = len(train_ds.room_list)
ff_net = FeedforwardNet(1024, output_size)
ff_net.to(device)
# 63.42, lr=0.00001, wd=0.001, ss=50, g=0.1
# 64.49, lr=0.0001, wd=0.001, ss=10, g=0.5
optimizer = torch.optim.Adam(ff_net.parameters(),
lr=0.0001,
weight_decay=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=10,
gamma=0.5)
loss_fxn = ff_loss
train_losses = []
val_losses = []
train_acc = []
val_acc = []
desc = ""
with trange(epochs) as pbar:
for epoch in pbar:
train_epoch_loss = []
val_epoch_loss = []
train_epoch_acc = []
val_epoch_acc = []
for batch_idx, (query_em, _, label) in enumerate(train_dl):
pred = ff_net(query_em)
loss = loss_fxn(pred, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_epoch_loss.append(loss.item())
accuracy = ((torch.argmax(pred, dim=1) == label) * 1.0).mean()
train_epoch_acc.append(accuracy)
if batch_idx % 100 == 0:
pbar.set_description((desc).rjust(20))
scheduler.step()
train_losses.append(torch.mean(torch.tensor(train_epoch_loss)))
train_acc.append(torch.mean(torch.tensor(train_epoch_acc)))
for batch_idx, (query_em, _, label) in enumerate(val_dl):
with torch.no_grad():
pred = ff_net(query_em)
loss = loss_fxn(pred, label)
val_epoch_loss.append(loss.item() * len(label))
accuracy = ((torch.argmax(pred, dim=1) == label) *
1.0).mean()
val_epoch_acc.append(accuracy * len(label))
if batch_idx % 100 == 0:
desc = (f"{loss.item():6.4}" + ", " +
f"{accuracy.item():6.4}")
pbar.set_description((desc).rjust(20))
val_losses.append(
torch.sum(torch.tensor(val_epoch_loss)) / len(val_ds))
val_acc.append(
torch.sum(torch.tensor(val_epoch_acc)) / len(val_ds))
if epoch == 0:
best_val_acc = val_acc[-1]
torch.save(ff_net.state_dict(),
"./checkpoints/best_ff_" + suffix + ".pt")
elif val_acc[-1] > best_val_acc:
best_val_acc = val_acc[-1]
torch.save(ff_net.state_dict(),
"./checkpoints/best_ff_" + suffix + ".pt")
ff_net.load_state_dict(
torch.load("./checkpoints/best_ff_" + suffix + ".pt"))
ff_net.eval()
test_loss, test_acc = [], []
for batch_idx, (query_em, _, label) in enumerate(test_dl):
pred = ff_net(query_em)
loss = loss_fxn(pred, label)
test_loss.append(loss.item())
accuracy = ((torch.argmax(pred, dim=1) == label) * 1.0).mean()
test_acc.append(accuracy)
print("test loss:", torch.mean(torch.tensor(test_loss)))
print("test acc:", torch.mean(torch.tensor(test_acc)))
return train_losses, val_losses, train_acc, val_acc, test_loss, test_acc
if __name__ == "__main__":
(
train_losses_list,
val_losses_list,
train_acc_list,
val_acc_list,
test_loss_list,
test_acc_list,
) = (
[],
[],
[],
[],
[],
[],
)
for lm in ["RoBERTa-large"]:
for label_set in ["nyuClass"]:
for use_gt in [True]:
print("Starting:", lm, label_set, "use_gt =", use_gt)
(
train_losses,
val_losses,
train_acc,
val_acc,
test_loss,
test_acc,
) = train_job(lm, label_set, use_gt, 10, 512)
train_losses_list.append(train_losses)
val_losses_list.append(val_losses)
train_acc_list.append(train_acc)
val_acc_list.append(val_acc)
test_loss_list.append(test_loss)
test_acc_list.append(test_acc)
pickle.dump(train_losses_list, open("./ff_results/train_losses.pkl", "wb"))
pickle.dump(train_acc_list, open("./ff_results/train_acc.pkl", "wb"))
pickle.dump(val_losses_list, open("./ff_results/val_losses.pkl", "wb"))
pickle.dump(val_acc_list, open("./ff_results/val_acc.pkl", "wb"))
pickle.dump(test_loss_list, open("./ff_results/test_loss.pkl", "wb"))
pickle.dump(test_acc_list, open("./ff_results/test_acc.pkl", "wb"))