-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscene_graph.py
279 lines (235 loc) · 9.98 KB
/
scene_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import numpy as np
from enum import Enum
from copy import deepcopy
"""
SceneGraph, SceneNode, SceneEdge, NodeType classes
"""
class SceneGraph:
"""
SceneGraph class
nodes a list of SceneNode
edge_dict dictionary of SceneEdges {(start_idx, end_idx):
a list of SceneEdge between start and end nodes where start_idx and end_idx are
the node's respective indices in the nodes list } # TODO
"""
def __init__(self):
self.__nodes = []
self.__edge_dict = dict()
self.__hierarchy = [NodeType.building, NodeType.room, NodeType.object]
def num_nodes(self, node_type=None):
if node_type is None:
return len(self.__nodes)
else:
return sum(node.node_type == node_type for node in self.__nodes)
def num_edges(self):
return sum([len(v) for v in self.__edge_dict.values()])
def get_node(self, node_idx):
return self.__nodes[node_idx]
def get_node_by_id_type(self, node_id, node_type):
filtered_nodes = list(
filter(lambda x: x.node_id == node_id and x.node_type == node_type,
self.__nodes))
if len(filtered_nodes) == 0:
return None
elif len(filtered_nodes) == 1:
return filtered_nodes[0]
else:
raise RuntimeError(
'get_node_by_id_type() found more than one nodes.')
def get_edge(self, start_idx, end_idx, rel):
return next((edge for edge in self.__edge_dict[(start_idx, end_idx)]
if edge.rel == rel), None)
def get_edge_relationships(self, start_idx, end_idx):
return [edge.rel for edge in self.__edge_dict[(start_idx, end_idx)]]
def get_edges(self, start_idx, end_idx):
return self.__edge_dict[(start_idx, end_idx)]
def get_nodes_copy(self):
return deepcopy(self.__nodes)
def get_edge_dict_copy(self):
return deepcopy(self.__edge_dict)
def get_hierarchy_copy(self):
return deepcopy(self.__hierarchy)
def set_hierarchy(self, new_hierarchy):
for layer in new_hierarchy:
assert isinstance(layer, NodeType)
self.__hierarchy = new_hierarchy
def get_adjacent_node_indices(self, node_idx):
out_indices = [
idx_pair[1] for idx_pair in list(self.__edge_dict.keys())
if idx_pair[0] == node_idx
]
in_indices = [
idx_pair[0] for idx_pair in list(self.__edge_dict.keys())
if idx_pair[1] == node_idx
]
return out_indices, in_indices
def find_parent_idx(self, scene_node):
if scene_node.node_type == NodeType.building:
return None
node_idx = self.__nodes.index(scene_node)
expected_type_idx = self.__hierarchy.index(scene_node.node_type) - 1
expected_type = self.__hierarchy[expected_type_idx]
parent_indices = [
idx_pair[1] for idx_pair in list(self.__edge_dict.keys())
if idx_pair[0] == node_idx
and self.__nodes[idx_pair[1]].node_type == expected_type
]
if len(parent_indices) == 0:
return None
elif len(parent_indices) == 1:
return parent_indices[0]
else:
print('Warning: {} has more than one parent.'.format(
self.__nodes[node_idx]))
return parent_indices[0]
def get_relationship_set(self):
return set(scene_edge.rel
for scene_edge in sum(self.__edge_dict.values(), []))
def add_node(self, new_node):
assert isinstance(new_node, SceneNode)
if new_node not in self.__nodes:
self.__nodes.append(new_node)
def add_edge(self, new_edge):
assert isinstance(new_edge, SceneEdge)
if new_edge.weight == 0: # do not update when weight is 0
return
# update self.__nodes
try:
start_idx = self.__nodes.index(new_edge.start)
except ValueError:
start_idx = len(self.__nodes)
self.__nodes.append(new_edge.start) # make shallow copy
try:
end_idx = self.__nodes.index(new_edge.end)
except ValueError:
end_idx = len(self.__nodes)
self.__nodes.append(new_edge.end) # make shallow copy
# update self.__edge_dict
# TODO: delete print after debugging
if (start_idx, end_idx) in self.__edge_dict.keys():
try:
edge_idx = self.__edge_dict[(start_idx,
end_idx)].index(new_edge)
self.__edge_dict[(start_idx, end_idx)][edge_idx] = new_edge
print("Update weight of edge {}".format(new_edge))
except ValueError:
print(
"Additional relationship ({}) between scene node {} and {}"
.format(new_edge.rel, new_edge.start, new_edge.end))
self.__edge_dict[(start_idx, end_idx)].append(new_edge)
else:
self.__edge_dict[(start_idx, end_idx)] = [new_edge]
if new_edge.start.node_type != new_edge.end.node_type and new_edge.rel == "AtLocation":
if new_edge.start.node_type not in self.__hierarchy:
parent_layer = new_edge.end.node_type
idx_parent_layer = self.__hierarchy.index(parent_layer)
self.__hierarchy = self.__hierarchy[:idx_parent_layer+1] + [new_edge.start.node_type] \
+ self.__hierarchy[idx_parent_layer+1:]
print("hierarchy of scene graph updated to", self.__hierarchy)
elif new_edge.end.node_type not in self.__hierarchy:
child_layer = new_edge.start.node_type
idx_child_layer = self.__hierarchy.index(child_layer)
self.__hierarchy = self.__hierarchy[:idx_child_layer] + [new_edge.end.node_type] \
+ self.__hierarchy[idx_child_layer:]
print("hierarchy of scene graph updated to", self.__hierarchy)
def generate_adjacency_matrix(self):
nr_nodes = len(self.__nodes)
adjacency_matrix = np.zeros((nr_nodes, nr_nodes), dtype=bool)
# A[i, j] = True when there is an edge from the i-th node to the j-th node in self.nodes
start_indices = [
edge_indices[0] for edge_indices in self.__edge_dict.keys()
]
end_indices = [
edge_indices[1] for edge_indices in self.__edge_dict.keys()
]
adjacency_matrix[start_indices, end_indices] = True
return adjacency_matrix
def num_correct_labels(self, scene_graph_ref):
correct_labels = 0
for i, node in enumerate(self.__nodes):
if node.semantic_label == scene_graph_ref.get_node(
i).semantic_label:
correct_labels += 1
return correct_labels
class SceneEdge:
"""
SceneEdge class
start SceneNode
rel string or None for unknown relationship (ConceptNet and VG relationships or None)
end SceneNode
weight float
"""
def __init__(self, start, rel, end, weight=1.0):
assert isinstance(start, SceneNode)
assert isinstance(end, SceneNode)
self.start = start
self.rel = rel
self.end = end
self.weight = weight
def __str__(self):
return "{0} - {1} - {2}".format(self.start, self.rel, self.end)
def __repr__(self):
return str(self)
def __eq__(self, other):
# start, rel, end all have to be the same, but weight does not matter
if not isinstance(other, SceneEdge):
# don't attempt to compare against unrelated types
return NotImplemented
if not (self.start == other.start and self.rel == other.rel
and self.end == other.end):
return False
elif self.weight != other.weight: # TODO: remove after debug
print("same scene edge with different weight")
return True
else:
return True
class NodeType(Enum):
human = 0 # not used right now
object = 1
room = 2
building = 3
place = 4 # not used by CRF class
class SceneNode:
"""
SceneNode class
node_id int (unique for each node in the same graph)
node_type SceneNodeType (objects, rooms, etc. or layer)
semantic_label string
centroid 1d numpy array
size 1d numpy array or None # TODO: on hold
possible_labels a list of strings or None
label_weights 1d numpy array of weights corresponding to semantic_label in possible_labels
"""
def __init__(self,
node_id,
node_type,
centroid,
size=None,
semantic_label=None,
possible_labels=None,
label_weights=None):
assert isinstance(node_type, NodeType)
self.node_id = node_id
self.node_type = node_type
self.semantic_label = semantic_label
self.centroid = np.array(centroid)
self.size = None if size is None else np.array(size)
self.possible_labels = possible_labels
self.label_weights = np.array(label_weights)
def __str__(self):
semantic_label = self.semantic_label if self.semantic_label is not None else 'None'
return '%s (%d)' % (semantic_label, self.node_id)
def __repr__(self):
return str(self)
def __hash__(self):
return hash((self.node_id, self.node_type, self.semantic_label))
def __eq__(self, other):
# compare id, node_type and semantic_label
if self.node_id == other.node_id and self.node_type == other.node_type and \
self.semantic_label == other.semantic_label:
return True
elif self.node_id == other.node_id and self.node_type == other.node_type: # Todo: for debugging
print("Same node id and type but different semantic label")
return False
else:
return False