-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzero_shot_bldgs.py
245 lines (203 loc) · 8.06 KB
/
zero_shot_bldgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from cProfile import label
from load_matterport3d_dataset import Matterport3dDataset
from statistics import mean, stdev
from os import path, mkdir
from extract_labels import create_label_lists
import torch
import torch_geometric
import gensim
from torch_geometric.loader import DataLoader
import numpy as np
from matplotlib import pyplot as plt
from model_utils import get_category_index_map
import torch.nn.functional as F
from torch_scatter import scatter
from transformers import (
BertTokenizer,
BertForMaskedLM,
RobertaTokenizer,
RobertaForMaskedLM,
GPT2LMHeadModel,
GPT2Tokenizer,
GPTNeoForCausalLM,
AutoTokenizer,
AutoModelForCausalLM,
GPTJForCausalLM,
)
from tqdm import tqdm
from perplexity_measure import compute_object_norm_inv_ppl
import pandas as pd
import os
def zero_shot_bldgs(lm,
use_cooccurencies=True,
batch_size=82,
k=5,
label_set="nyuClass",
use_test=False):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if lm == "RoBERTa-large":
tokenizer = RobertaTokenizer.from_pretrained("roberta-large")
lm_model = RobertaForMaskedLM.from_pretrained("roberta-large")
object_norm_inv_perplexity = compute_object_norm_inv_ppl(
"./cooccurrency_matrices/" + label_set +
"_roberta_large/building_room.npy")
start = "<s>"
end = "</s>"
mask_id = tokenizer.convert_tokens_to_ids(
tokenizer.tokenize("<mask>"))[0]
elif lm == "GPT-J":
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
lm_model = GPTJForCausalLM.from_pretrained(
"EleutherAI/gpt-j-6B",
revision="float16",
torch_dtype=torch.float16, # low_cpu_mem_usage=True
)
object_norm_inv_perplexity = compute_object_norm_inv_ppl(
"./cooccurrency_matrices/" + label_set +
"_gpt_j/building_room.npy")
else:
print("Model option " + lm + " not implemented yet")
raise NotImplemented
if use_cooccurencies:
""" object_norm_inv_perplexity = compute_object_norm_inv_ppl(
"./cooccurrency_matrices/" + label_set + "_gt/building_room.npy",
True) """
object_norm_inv_perplexity = compute_object_norm_inv_ppl(
"./cooccurrency_matrices/norm_bldg_room/building_room.npy", True)
object_norm_inv_perplexity = object_norm_inv_perplexity.to(device)
lm_model.eval()
lm_model.to(device)
def negcrossentropy(text):
tokens_tensor = tokenizer.encode(text,
add_special_tokens=False,
return_tensors="pt").to(device)
with torch.no_grad():
output = lm_model(tokens_tensor, labels=tokens_tensor)
loss = output[0]
return -loss
def pll(text, mean=True):
# Tokenize input
text = start + " " + text.capitalize() + " " + end
tokenized_text = tokenizer.tokenize(text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
tokens_tensor = torch.tensor([indexed_tokens]).reshape(-1)
masked_tokens_tensor = tokens_tensor.repeat(tokens_tensor.shape[0] - 3,
1)
# Mask out one token per row
ind1 = np.arange(masked_tokens_tensor.shape[0])
ind2 = np.arange(1, masked_tokens_tensor.shape[0] + 1)
masked_tokens_tensor[ind1, ind2] = mask_id
masked_tokens_tensor = masked_tokens_tensor.to(
device) # if you have gpu
# Predict all tokens
with torch.no_grad():
total = 0
for i in range(len(masked_tokens_tensor)):
outputs = lm_model(masked_tokens_tensor[i].unsqueeze(0))
predictions = outputs[0] # .to("cpu")
mask_scores = predictions[0, i + 1]
total += mask_scores[tokens_tensor[i + 1]] - torch.logsumexp(
mask_scores, dim=0)
Z = len(masked_tokens_tensor) if mean else 1
return total / Z
if lm in ["GPT2-large", "GPT-Neo", "GPT-J"]:
scoring_fxn = negcrossentropy
else:
scoring_fxn = pll
def construct_dist(rooms, scoring_fxn, print_query=False):
query_str = "A building containing "
names = []
for rm in rooms:
names.append(room_list_pl[rm])
if len(names) == 1:
query_str += names[0]
elif len(names) == 2:
query_str += names[0] + " and " + names[1]
else:
for name in names[:-1]:
query_str += name + ", "
query_str += "and " + names[-1]
query_str += " is called a"
if print_query:
print(query_str)
TEMP = []
for bldg in building_list:
TEMP_STR = query_str + "n " if bldg[
0] in "aeiou" else query_str + " "
TEMP_STR += bldg + "."
score = scoring_fxn(TEMP_STR)
TEMP.append(score)
dist = torch.tensor(TEMP)
if lm == "GPT-J":
dist = dist.type(torch.DoubleTensor)
return dist
dataset = Matterport3dDataset('./mp_data/bldg_infer.pkl')
labels, pl_labels = create_label_lists(dataset)
building_list, room_list, object_list = labels
building_list_pl, room_list_pl, object_list_pl = pl_labels
building_list = ["house", "office complex", "spa resort"]
building_list_pl = ["houses", "office complexes", "spa resorts"]
if use_test:
dataset = dataset.get_test_set()
# create data loader
dataloader = DataLoader(dataset, batch_size=batch_size)
batch = next(iter(dataloader))
label = (
batch.y[batch.building_mask],
batch.y[batch.room_mask],
batch.y[batch.object_mask],
)
y_room = F.one_hot(label[1]).type(torch.LongTensor)
(
room_building_edge_index,
object_room_edge_index,
room_edge_index,
object_edge_index,
) = (
batch.room_building_edge_index,
batch.object_room_edge_index,
batch.room_edge_index,
batch.object_edge_index,
)
category_index_map = get_category_index_map(batch)
excluded_idxs = torch.tensor([0, 1, 21, 26]).to(device)
room_counts = torch.zeros([3, 27]).to(device)
bldg_counts = torch.zeros(3).to(device)
correct, total = 0, 0
data_dict = {bldg_label: [0, 0] for bldg_label in building_list}
for i in tqdm(range(len(label[0]))):
mask = category_index_map[room_building_edge_index[1]] == i
neighbor_dists = y_room[category_index_map[room_building_edge_index[0]
[mask]]].to(device)
room_mask = torch.sum(neighbor_dists, 0)
room_mask[excluded_idxs] = 0
room_counts[label[0][i]] += room_mask
bldg_counts[label[0][i]] += 1
room_mask = torch.sum(neighbor_dists, 0) > 0
room_mask[excluded_idxs] = 0
present_rooms_scores = room_mask * object_norm_inv_perplexity
top_k_rooms = torch.topk(present_rooms_scores, k).indices
best_bldg_idx = torch.argmax(
construct_dist(top_k_rooms,
scoring_fxn,
print_query=label[0][i] == 2)).to("cpu")
if label[0][i] == 2:
print(
"--------------------------------------------------------------"
)
print(building_list[label[0][i]])
print(building_list[best_bldg_idx])
if label[0][i] == best_bldg_idx:
correct += 1
data_dict[building_list[label[0][i]]][0] += 1
total += 1
data_dict[building_list[label[0][i]]][1] += 1
for i in torch.sort(object_norm_inv_perplexity, descending=True).indices:
print(room_list[i])
print(room_list)
print("Correct:", correct)
print("Total:", total)
print(data_dict)
if __name__ == "__main__":
# Can change label set to nyuClass
zero_shot_bldgs("GPT-J", True, label_set="mpcat40", k=4, use_test=False)