-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbasemodels.py
84 lines (65 loc) · 3.1 KB
/
basemodels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models.feature_extraction import create_feature_extractor
class cusResNet18(nn.Module):
def __init__(self, n_classes, pretrained = True):
super(cusResNet18, self).__init__()
resnet = torchvision.models.resnet18(pretrained=pretrained)
resnet.fc = nn.Linear(resnet.fc.in_features, n_classes)
self.avgpool = resnet.avgpool
self.returnkey_avg = 'avgpool'
self.returnkey_fc = 'fc'
self.body = create_feature_extractor(
resnet, return_nodes={'avgpool': self.returnkey_avg, 'fc': self.returnkey_fc})
def forward(self, x):
outputs = self.body(x)
return outputs[self.returnkey_fc], outputs[self.returnkey_avg].squeeze()
def inference(self, x):
outputs = self.body(x)
return outputs[self.returnkey_fc], outputs[self.returnkey_avg].squeeze()
class cusResNet50(cusResNet18):
def __init__(self, n_classes, pretrained = True):
super(cusResNet50, self).__init__(n_classes, pretrained)
resnet = torchvision.models.resnet50(pretrained=pretrained)
resnet.fc = nn.Linear(resnet.fc.in_features, n_classes)
self.avgpool = resnet.avgpool
self.returnkey_avg = 'avgpool'
self.returnkey_fc = 'fc'
self.body = create_feature_extractor(
resnet, return_nodes={'avgpool': self.returnkey_avg, 'fc': self.returnkey_fc})
class cusResNet152(cusResNet18):
def __init__(self, n_classes, pretrained = True):
super(cusResNet152, self).__init__(n_classes, pretrained)
resnet = torchvision.models.resnet152(pretrained=pretrained)
resnet.fc = nn.Linear(resnet.fc.in_features, n_classes)
self.avgpool = resnet.avgpool
self.returnkey_avg = 'avgpool'
self.returnkey_fc = 'fc'
self.body = create_feature_extractor(
resnet, return_nodes={'avgpool': self.returnkey_avg, 'fc': self.returnkey_fc})
class cusDenseNet121(cusResNet18):
def __init__(self, n_classes, pretrained = True, disentangle = False):
super(cusDenseNet121, self).__init__(n_classes, pretrained)
resnet = torchvision.models.densenet121(pretrained=pretrained)
resnet.classifier = nn.Linear(resnet.classifier.in_features, n_classes)
self.returnkey_fc = 'classifier'
self.body = create_feature_extractor(
resnet, return_nodes={'classifier': self.returnkey_fc})
def forward(self, x):
outputs = self.body(x)
return outputs[self.returnkey_fc], outputs[self.returnkey_fc]
def inference(self, x):
outputs = self.body(x)
return outputs[self.returnkey_fc], outputs[self.returnkey_fc]
class MLPclassifer(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(MLPclassifer, self).__init__()
self.relu = nn.ReLU()
self.fc1 = nn.Linear(input_dim, output_dim)
def forward(self,x):
x = self.relu(x)
x = self.fc1(x)
#x = self.fc2(x)
return x