-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathtraining_lstm_ctc .py
138 lines (102 loc) · 4.7 KB
/
training_lstm_ctc .py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 16 22:37:44 2018
@author: yy
"""
import os,sys
import cv2
import numpy as np
from sklearn.model_selection import train_test_split
from keras.callbacks import Callback, EarlyStopping
# from keras.utils.visualize_util import plot
#from visual_callbacks import AccLossPlotter
#plotter = AccLossPlotter(graphs=['acc', 'loss'], save_graph=True, save_graph_path=sys.path[0])
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import SGD, Adam
from keras.models import load_model
from keras import backend as K
from dataset_split import Dataset
from dataset_load_ctc import get_image_data_ctc
from model_gru_ctc import get_gru_ctc_model
from model_lstm_ctc import get_lstm_ctc_model
from model_cnn import get_cnn_model
#识别字符集
char_set = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
#定义识别字符串的最大长度
seq_len=8
#识别结果集合个数 0-9
label_count=len(char_set)+1
image_size = (128, 32)
IMAGE_HEIGHT = image_size[1]
IMAGE_WIDTH = image_size[0]
#CNN网络模型类
class Training_Predict:
def __init__(self):
self.base_model = None
self.ctc_model = None
self.conv_shape = None
#建立模型
def build_model(self):
#构建一个空的网络模型,它是一个线性堆叠模型,各神经网络层会被顺序添加,专业名称为序贯模型或线性堆叠模型
self.conv_shape, self.base_model, self.ctc_model = get_lstm_ctc_model(image_size, seq_len, label_count)
def predict(self):
file_list = []
X, Y = get_image_data_ctc('./img_data/ctc_test/', file_list)
y_pred = self.base_model.predict(X)
shape = y_pred[:, :, :].shape # 2:
out = K.get_value(K.ctc_decode(y_pred[:, :, :], input_length=np.ones(shape[0]) * shape[1])[0][0])[:,:seq_len] # 2:
print()
error_count=0
for i in range(len(X)):
print(file_list[i])
str_src = str(os.path.split(file_list[i])[-1]).split('.')[0].split('_')[-1]
print(out[i])
str_out = ''.join([str( char_set[x] ) for x in out[i] if x!=-1 ])
print(str_src, str_out)
if str_src!=str_out:
error_count+=1
print('This is a error image---------------------------:',error_count)
class LossHistory(Callback):
def on_train_begin(self, logs={}):
self.losses = []
def on_epoch_end(self, epoch, logs=None):
self.ctc_model.save_weights('ctc_model.w')
self.base_model.save_weights('base_model.w')
self.test()
def on_batch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
#训练模型
def train(self, batch_size = 32, nb_epoch = 15, data_augmentation = False):
X,Y=get_image_data_ctc(dir='./img_data/ctc/')
print('train----------',X.shape,Y.shape)
conv_shape = self.conv_shape
maxin=2000
result=self.ctc_model.fit([X[:maxin], Y[:maxin], np.array(np.ones(len(X))*int(conv_shape[1]))[:maxin], np.array(np.ones(len(X))*seq_len)[:maxin]], Y[:maxin],
batch_size=20,
epochs=200,
callbacks=[ EarlyStopping(patience=10)], #checkpointer, history,history, plotter,
validation_data=([X[maxin:], Y[maxin:], np.array(np.ones(len(X))*int(conv_shape[1]))[maxin:], np.array(np.ones(len(X))*seq_len)[maxin:]], Y[maxin:]),
)
MODEL_PATH = './lstm.model.h5'
def save_model(self, file_path = MODEL_PATH):
self.base_model.save(file_path+'base')
self.ctc_model.save(file_path+'ctc')
def load_model(self, file_path = MODEL_PATH):
self.base_model = load_model(file_path)
def evaluate(self, dataset):
score = self.base_model.evaluate(dataset.test_images, dataset.test_labels, verbose = 1)
print("%s: %.2f%%" % (self.model.metrics_names[1], score[1] * 100))
if __name__ == '__main__':
#训练模型,这段代码不用,注释掉
model = Training_Predict()
model.build_model()
model.train()
model.save_model(file_path = './model/lstm_ctc_model.h5')
# model.load_model(file_path = './model/lstm_ctc_model.h5base')
model.predict()
'''
#评估模型
model = Model()
model.load_model(file_path = './model/lstm_ctc_model.h5')
model.evaluate(dataset)
'''