forked from imperial-qore/TranAD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
308 lines (279 loc) · 12.5 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import sys
import pandas as pd
import numpy as np
# import pickle
import json
from src.folderconstants import output_folder, data_folder
# from shutil import copyfile
datasets = [
"synthetic",
"SMD",
"SWaT",
"SMAP",
"MSL",
"WADI",
"MSDS",
"UCR",
"MBA",
"NAB",
]
wadi_drop = ["2_LS_001_AL", "2_LS_002_AL", "2_P_001_STATUS", "2_P_002_STATUS"]
def load_and_save(category, filename, dataset, dataset_folder):
temp = np.genfromtxt(
os.path.join(dataset_folder, category, filename),
dtype=np.float64,
delimiter=",",
)
print(dataset, category, filename, temp.shape)
np.save(os.path.join(output_folder, f"SMD/{dataset}_{category}.npy"), temp)
return temp.shape
def load_and_save2(category, filename, dataset, dataset_folder, shape):
temp = np.zeros(shape)
with open(os.path.join(dataset_folder, "interpretation_label", filename), "r") as f:
ls = f.readlines()
for line in ls:
pos, values = line.split(":")[0], line.split(":")[1].split(",")
start, end, indx = (
int(pos.split("-")[0]),
int(pos.split("-")[1]),
[int(i) - 1 for i in values],
)
temp[start - 1 : end - 1, indx] = 1
print(dataset, category, filename, temp.shape)
np.save(os.path.join(output_folder, f"SMD/{dataset}_{category}.npy"), temp)
def normalize(a):
a = a / np.maximum(np.absolute(a.max(axis=0)), np.absolute(a.min(axis=0)))
return a / 2 + 0.5
def normalize2(a, min_a=None, max_a=None):
"""
Normalize the input array 'a' between the minimum and maximum values.
Args:
a (array-like): The input array to be normalized.
min_a (float, optional): The minimum value of 'a'. If not provided, it will be calculated as the minimum value of 'a'.
max_a (float, optional): The maximum value of 'a'. If not provided, it will be calculated as the maximum value of 'a'.
Returns:
tuple: A tuple containing the normalized array, the minimum value, and the maximum value.
"""
if min_a is None:
min_a, max_a = min(a), max(a)
return (a - min_a) / (max_a - min_a), min_a, max_a
def normalize3(a, min_a=None, max_a=None):
"""
Normalize the input array `a` using the minimum and maximum values.
Args:
a (numpy.ndarray): The input array to be normalized.
min_a (numpy.ndarray, optional): The minimum values for normalization. If not provided, the minimum values will be calculated from `a`.
max_a (numpy.ndarray, optional): The maximum values for normalization. If not provided, the maximum values will be calculated from `a`.
Returns:
numpy.ndarray: The normalized array.
numpy.ndarray: The minimum values used for normalization.
numpy.ndarray: The maximum values used for normalization.
"""
if min_a is None:
min_a, max_a = np.min(a, axis=0), np.max(a, axis=0)
return (a - min_a) / (max_a - min_a + 0.0001), min_a, max_a
def convertNumpy(df):
x = df[df.columns[3:]].values[::10, :]
return (x - x.min(0)) / (x.ptp(0) + 1e-4)
def load_data(dataset):
folder = os.path.join(output_folder, dataset)
os.makedirs(folder, exist_ok=True)
if dataset == "synthetic":
train_file = os.path.join(
data_folder, dataset, "synthetic_data_with_anomaly-s-1.csv"
)
test_labels = os.path.join(data_folder, dataset, "test_anomaly.csv")
dat = pd.read_csv(train_file, header=None)
split = 10000
train = normalize(dat.values[:, :split].reshape(split, -1))
test = normalize(dat.values[:, split:].reshape(split, -1))
lab = pd.read_csv(test_labels, header=None)
lab[0] -= split
labels = np.zeros(test.shape)
for i in range(lab.shape[0]):
point = lab.values[i][0]
labels[point - 30 : point + 30, lab.values[i][1:]] = 1
test += labels * np.random.normal(0.75, 0.1, test.shape)
for file in ["train", "test", "labels"]:
np.save(os.path.join(folder, f"{file}.npy"), eval(file))
elif dataset == "SMD":
dataset_folder = "data/SMD"
file_list = os.listdir(os.path.join(dataset_folder, "train"))
for filename in file_list:
if filename.endswith(".txt"):
load_and_save("train", filename, filename.strip(".txt"), dataset_folder)
s = load_and_save(
"test", filename, filename.strip(".txt"), dataset_folder
)
load_and_save2(
"labels", filename, filename.strip(".txt"), dataset_folder, s
)
elif dataset == "UCR":
dataset_folder = "data/UCR"
file_list = os.listdir(dataset_folder)
for filename in file_list:
if not filename.endswith(".txt"):
continue
vals = filename.split(".")[0].split("_")
dnum, vals = int(vals[0]), vals[-3:]
vals = [int(i) for i in vals]
temp = np.genfromtxt(
os.path.join(dataset_folder, filename), dtype=np.float64, delimiter=","
)
min_temp, max_temp = np.min(temp), np.max(temp)
temp = (temp - min_temp) / (max_temp - min_temp)
train, test = temp[: vals[0]], temp[vals[0] :]
labels = np.zeros_like(test)
labels[vals[1] - vals[0] : vals[2] - vals[0]] = 1
train, test, labels = (
train.reshape(-1, 1),
test.reshape(-1, 1),
labels.reshape(-1, 1),
)
for file in ["train", "test", "labels"]:
np.save(os.path.join(folder, f"{dnum}_{file}.npy"), eval(file))
elif dataset == "NAB":
dataset_folder = "data/NAB"
file_list = os.listdir(dataset_folder)
with open(dataset_folder + "/labels.json") as f:
labeldict = json.load(f)
for filename in file_list:
if not filename.endswith(".csv"):
continue
df = pd.read_csv(dataset_folder + "/" + filename)
vals = df.values[:, 1]
labels = np.zeros_like(vals, dtype=np.float64)
for timestamp in labeldict["realKnownCause/" + filename]:
tstamp = timestamp.replace(".000000", "")
index = np.where(((df["timestamp"] == tstamp).values + 0) == 1)[0][0]
labels[index - 4 : index + 4] = 1
min_temp, max_temp = np.min(vals), np.max(vals)
vals = (vals - min_temp) / (max_temp - min_temp)
train, test = vals.astype(float), vals.astype(float)
train, test, labels = (
train.reshape(-1, 1),
test.reshape(-1, 1),
labels.reshape(-1, 1),
)
fn = filename.replace(".csv", "")
for file in ["train", "test", "labels"]:
np.save(os.path.join(folder, f"{fn}_{file}.npy"), eval(file))
elif dataset == "MSDS":
dataset_folder = "data/MSDS"
df_train = pd.read_csv(os.path.join(dataset_folder, "train.csv"))
df_test = pd.read_csv(os.path.join(dataset_folder, "test.csv"))
df_train, df_test = df_train.values[::5, 1:], df_test.values[::5, 1:]
_, min_a, max_a = normalize3(np.concatenate((df_train, df_test), axis=0))
train, _, _ = normalize3(df_train, min_a, max_a)
test, _, _ = normalize3(df_test, min_a, max_a)
labels = pd.read_csv(os.path.join(dataset_folder, "labels.csv"))
labels = labels.values[::1, 1:]
for file in ["train", "test", "labels"]:
np.save(os.path.join(folder, f"{file}.npy"), eval(file).astype("float64"))
elif dataset == "SWaT":
dataset_folder = "data/SWaT"
file = os.path.join(dataset_folder, "series.json")
df_train = pd.read_json(file, lines=True)[["val"]][3000:6000]
df_test = pd.read_json(file, lines=True)[["val"]][7000:12000]
train, min_a, max_a = normalize2(df_train.values)
test, _, _ = normalize2(df_test.values, min_a, max_a)
labels = pd.read_json(file, lines=True)[["noti"]][7000:12000] + 0
for file in ["train", "test", "labels"]:
np.save(os.path.join(folder, f"{file}.npy"), eval(file))
elif dataset in ["SMAP", "MSL"]:
dataset_folder = "data/SMAP_MSL"
file = os.path.join(dataset_folder, "labeled_anomalies.csv")
values = pd.read_csv(file)
values = values[values["spacecraft"] == dataset]
filenames = values["chan_id"].values.tolist()
for fn in filenames:
train = np.load(f"{dataset_folder}/train/{fn}.npy")
test = np.load(f"{dataset_folder}/test/{fn}.npy")
# # Save train to Excel file
# df_train = pd.DataFrame(train)
# df_train.to_excel(f"{dataset_folder}/{fn}_train.xlsx", index=False)
# # Save test to Excel file
# df_test = pd.DataFrame(test)
# df_test.to_excel(f"{dataset_folder}/{fn}_test.xlsx", index=False)
train, min_a, max_a = normalize3(train)
test, _, _ = normalize3(test, min_a, max_a)
np.save(f"{folder}/{fn}_train.npy", train)
np.save(f"{folder}/{fn}_test.npy", test)
# # Save train to Excel file
# df_train = pd.DataFrame(train)
# df_train.to_excel(f"{folder}/{fn}_train.xlsx", index=False)
# # Save test to Excel file
# df_test = pd.DataFrame(test)
# df_test.to_excel(f"{folder}/{fn}_test.xlsx", index=False)
labels = np.zeros(test.shape)
indices = values[values["chan_id"] == fn]["anomaly_sequences"].values[0]
indices = indices.replace("]", "").replace("[", "").split(", ")
indices = [int(i) for i in indices]
for i in range(0, len(indices), 2):
labels[indices[i] : indices[i + 1], :] = 1
np.save(f"{folder}/{fn}_labels.npy", labels)
elif dataset == "WADI":
dataset_folder = "data/WADI"
ls = pd.read_csv(os.path.join(dataset_folder, "WADI_attacklabels.csv"))
train = pd.read_csv(
os.path.join(dataset_folder, "WADI_14days.csv"), skiprows=1000, nrows=2e5
)
test = pd.read_csv(os.path.join(dataset_folder, "WADI_attackdata.csv"))
train.dropna(how="all", inplace=True)
test.dropna(how="all", inplace=True)
train.fillna(0, inplace=True)
test.fillna(0, inplace=True)
test["Time"] = test["Time"].astype(str)
test["Time"] = pd.to_datetime(test["Date"] + " " + test["Time"])
labels = test.copy(deep=True)
for i in test.columns.tolist()[3:]:
labels[i] = 0
for i in ["Start Time", "End Time"]:
ls[i] = ls[i].astype(str)
ls[i] = pd.to_datetime(ls["Date"] + " " + ls[i])
for index, row in ls.iterrows():
to_match = row["Affected"].split(", ")
matched = []
for i in test.columns.tolist()[3:]:
for tm in to_match:
if tm in i:
matched.append(i)
break
st, et = str(row["Start Time"]), str(row["End Time"])
labels.loc[(labels["Time"] >= st) & (labels["Time"] <= et), matched] = 1
train, test, labels = (
convertNumpy(train),
convertNumpy(test),
convertNumpy(labels),
)
print(train.shape, test.shape, labels.shape)
for file in ["train", "test", "labels"]:
np.save(os.path.join(folder, f"{file}.npy"), eval(file))
elif dataset == "MBA":
dataset_folder = "data/MBA"
ls = pd.read_excel(os.path.join(dataset_folder, "labels.xlsx"))
train = pd.read_excel(os.path.join(dataset_folder, "train.xlsx"))
test = pd.read_excel(os.path.join(dataset_folder, "test.xlsx"))
train, test = train.values[1:, 1:].astype(float), test.values[1:, 1:].astype(
float
)
train, min_a, max_a = normalize3(train)
test, _, _ = normalize3(test, min_a, max_a)
ls = ls.values[:, 1].astype(int)
labels = np.zeros_like(test)
for i in range(-20, 20):
labels[ls + i, :] = 1
for file in ["train", "test", "labels"]:
np.save(os.path.join(folder, f"{file}.npy"), eval(file))
else:
raise Exception(f"Not Implemented. Check one of {datasets}")
if __name__ == "__main__":
commands = sys.argv[1:]
load = []
if len(commands) > 0:
for d in commands:
load_data(d)
else:
print("Usage: python preprocess.py <datasets>")
print(f"where <datasets> is space separated list of {datasets}")