forked from VITA-Group/MAK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_analyse.py
258 lines (215 loc) · 9.16 KB
/
exp_analyse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import re
import os
import os.path as osp
import numpy as np
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='Experiment summary parser')
parser.add_argument('--exp_prefix', type=str, help="the exp name (template) of the pretrained model")
parser.add_argument('--seeds', nargs='+', required=True)
parser.add_argument('--dataset', default='imagenet100', type=str)
parser.add_argument('--fewShot', action='store_true', help="if summery the few-shot performance")
return parser.parse_args()
def getStatisticsFromTxt(txtName, num_class=1000):
statistics = [0 for _ in range(num_class)]
with open(txtName, 'r') as f:
lines = f.readlines()
for line in lines:
s = re.search(r" ([0-9]+)$", line)
if s is not None:
statistics[int(s[1])] += 1
return statistics
def getAccAsimclr(saveDir, exp):
path = osp.join(saveDir, exp, 'log.txt')
if not osp.isfile(path):
return -1
with open(path, 'r') as file:
lines = file.read().splitlines()
bestAcc = -1
for line in lines[-20:]:
# set_trace()
groups = re.match("^On the best_model, test tacc is ([0-9]+\.[0-9]+)$", line)
if groups:
bestAcc = float(groups[1])
return bestAcc
def getClassWiseAccAsimclr(saveDir, exp, classnum=10):
"""
:param line:
:param save_list:
:return:
"""
strList = ""
for i in range(classnum):
strList += " ([0-9]+\.[0-9]+)"
path = osp.join(saveDir, exp, 'log.txt')
if not osp.isfile(path):
return []
with open(path, 'r') as file:
lines = file.read().splitlines()
save_list = []
for line in lines[-20:]:
# set_trace()
groups = re.match("^Each class acc is{}".format(strList), line)
if groups:
for i in range(classnum):
save_list.append(float(groups[i+1]))
return save_list
def getClassWiseAccImagenet(saveDir, exp, classnum=1000):
"""
:param line:
:param save_list:
:return:
"""
strList = ""
for i in range(classnum):
strList += " ([0-9]+\.[0-9]+)"
path = osp.join(saveDir, exp, 'log.txt')
if not osp.isfile(path):
return []
with open(path, 'r') as file:
lines = file.read().splitlines()
save_list = []
for line in lines[-5:]:
# set_trace()
groups = re.match("^acc per class is{}".format(strList), line)
if groups:
for i in range(classnum):
save_list.append(float(groups[i+1]))
return save_list
def getAccImagenet(saveDir, exp):
path = osp.join(saveDir, exp, 'log.txt')
if not osp.isfile(path):
return -1
with open(path, 'r') as file:
lines = file.read().splitlines()
bestAcc = -1
for line in lines[-20:]:
# set_trace()
groups = re.match("^On the best_model, test top5 tacc is ([0-9]+\.[0-9]+)", line)
if groups:
bestAcc = float(groups[1])
return bestAcc
def autoSummaryExpRes(saveDir, exps, prefix, dataset='cifar10',
noReturnAvg=False, returnValue=False, getInfo="Asimclr", group=3, noGroup=False):
'''
Args:
saveDir: str, path to save
exps: list of tuple: (exp)
prefix: display prefix
dataset: which dataset
Returns:
'''
accList = []
fullVarianceList = []
GroupVarienceList = []
majorAccList = []
moderateAccList = []
minorAccList = []
top5AccList = []
low5AccList = []
for exp in exps:
if getInfo == "Asimclr":
bestAcc = getAccAsimclr(saveDir, exp)
elif getInfo == "Imagenet" or getInfo == "Imagenet-100" or getInfo == "Places":
bestAcc = getAccImagenet(saveDir, exp)
if bestAcc < 0:
print("miss exp {}".format(exp))
continue
# get major moderate minor class accuracy
if dataset == 'Imagenet':
currentStatistics = np.array(getStatisticsFromTxt('split/ImageNet_LT/imageNet_LT_exp_train.txt'))
elif dataset == 'Imagenet-100':
currentStatistics = np.array(getStatisticsFromTxt('split/imagenet-100/imageNet_100_LT_train.txt', num_class=100))
else:
assert False
if getInfo == "Asimclr":
classWiseAcc = getClassWiseAccAsimclr(saveDir, exp, classnum=len(currentStatistics))
elif getInfo == "Imagenet" or getInfo == "Imagenet-100" or getInfo == "Places":
# set_trace()
classWiseAcc = getClassWiseAccImagenet(saveDir, exp, classnum=len(currentStatistics))
else:
assert False
# set_trace()
if not classWiseAcc:
print("miss classwise acc for {}".format(exp))
assert False
sortIdx = np.argsort(currentStatistics)
idxsMajor = sortIdx[len(currentStatistics) // 3 * 2:]
idxsModerate = sortIdx[len(currentStatistics) // 3 * 1: len(currentStatistics) // 3 * 2]
idxsMinor = sortIdx[: len(currentStatistics) // 3 * 1]
# set_trace()
classWiseAcc = np.array(classWiseAcc)
if getInfo == "Imagenet" or getInfo == "Imagenet-100" or getInfo == "Places":
classWiseAcc = classWiseAcc * 100
print("classWiseAcc is {}".format(classWiseAcc))
bestAcc = np.mean(classWiseAcc)
majorAcc = np.mean(classWiseAcc[idxsMajor])
moderateAcc = np.mean(classWiseAcc[idxsModerate])
minorAcc = np.mean(classWiseAcc[idxsMinor])
if getInfo == "Imagenet" or getInfo == "Imagenet-100" or getInfo == "Places":
idxsMany = np.nonzero(currentStatistics > 100)[0]
idxsMedium = np.nonzero((100 >= currentStatistics) & (currentStatistics >= 20))[0]
idxsFew = np.nonzero(currentStatistics < 20)[0]
majorAcc = np.mean(classWiseAcc[idxsMany])
moderateAcc = np.mean(classWiseAcc[idxsMedium])
minorAcc = np.mean(classWiseAcc[idxsFew])
accList.append(bestAcc)
majorAccList.append(majorAcc)
moderateAccList.append(moderateAcc)
minorAccList.append(minorAcc)
# balancenessList.append(imbalance_metric(classWiseAcc / 100, sigma=1))
# print("classWiseAcc is {}".format(classWiseAcc))
fullVarianceList.append(np.std(classWiseAcc / 100))
GroupVarienceList.append(np.std(np.array([majorAcc, moderateAcc, minorAcc]) / 100))
if group > 3:
assert len(classWiseAcc) % group == 0
group_idx_list = [sortIdx[len(currentStatistics) // group * cnt: len(currentStatistics) // group * (cnt + 1)] \
for cnt in range(0, group)]
group_accs = [np.mean(classWiseAcc[group_idx_list[cnt]]) for cnt in range(0, group)]
outputStr = "{}: group accs are".format(prefix)
for acc in group_accs:
outputStr += " {:.02f}".format(acc)
print(outputStr)
if returnValue:
return accList, majorAccList, moderateAccList, minorAccList
else:
if noReturnAvg:
outputStr = "{}: accs are".format(prefix)
for acc in accList:
outputStr += " {:.02f}".format(acc)
print(outputStr)
if not noGroup:
outputStr = "{}: majorAccs are".format(prefix)
for acc in majorAccList:
outputStr += " {:.02f}".format(acc)
print(outputStr)
outputStr = "{}: moderateAccs are".format(prefix)
for acc in moderateAccList:
outputStr += " {:.02f}".format(acc)
print(outputStr)
outputStr = "{}: minorAccs are".format(prefix)
for acc in minorAccList:
outputStr += " {:.02f}".format(acc)
print(outputStr)
else:
print("{}: acc is {:.02f}+-{:.02f}".format(prefix, np.mean(accList), np.std(accList)))
if not noGroup:
print("{}: vaiance is {:.04f}+-{:.04f}".format(prefix, np.mean(fullVarianceList), np.std(fullVarianceList)))
print("{}: GroupBalancenessList is {:.04f}+-{:.04f}".format(prefix, np.mean(GroupVarienceList), np.std(GroupVarienceList)))
print("{}: major acc is {:.02f}+-{:.02f}".format(prefix, np.mean(majorAccList), np.std(majorAccList)))
print("{}: moderate acc is {:.02f}+-{:.02f}".format(prefix, np.mean(moderateAccList), np.std(moderateAccList)))
print("{}: minor acc is {:.02f}+-{:.02f}".format(prefix, np.mean(minorAccList), np.std(minorAccList)))
def summaryIN100(exp_prefix, seeds, few_shot):
saveDir = "checkpoints_imagenet_tune"
exps = [exp_prefix.replace("{seed}", seed) for seed in seeds]
if few_shot:
exps = [exp + "__fewShot" for exp in exps]
else:
exps = [exp + "__lr30_wd0_epoch30_b512_d10d20" for exp in exps]
autoSummaryExpRes(saveDir, exps, "{} ".format(exp_prefix), getInfo='Imagenet-100', dataset='Imagenet-100')
if __name__ == '__main__':
args = parse_args()
if args.dataset == "imagenet-100":
summaryIN100(args.exp_prefix, args.seeds, args.fewShot)
else:
raise ValueError("dataset of {} is not supported, supported datasets includes [imagenet100]".format(args.dataset))