-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinputprocess.jl
171 lines (152 loc) · 5.62 KB
/
inputprocess.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#Author: Yavuz Faruk Bakman
#Date: 15/08/2019
#collects all labels and images' directories
function inputandlabelsdir(dirlab,dirinput)
println("Collecting input and labels' directories")
labels = []
images = []
for (root, dirs, files) in walkdir(mkpath(dirlab);)
for file in files
if occursin(".xml",file)
tolabel = joinpath(root,file)
jpgFile = string(file[1:length(file)-3], "jpg")
toimage = joinpath(dirinput,jpgFile)
push!(labels,tolabel)
push!(images,toimage)
end
end
end
println("Collecting done")
return images,labels
end
#collects input directories
function inputdir(inputdir)
images = []
println("Collecting input directories")
for (root, dirs, files) in walkdir(mkpath(inputdir);)
for file in files
toimage = joinpath(root,file)
push!(images,toimage)
end
end
return images
println("Collecting done")
end
#prepares input and its' labels
function prepareinputlabels(inArr,labArr)
in,imgs = prepareinput(inArr)
lab = preparelabels(labArr)
lab = arrangelabels(lab,416)
return in,lab,imgs
end
prepInput(inRes,imgs,data) =(prepInput!(inRes,imgs,args) for args in data)
function prepInput!(inRes,imgs,args)
im, img_size, img_originalsize, padding,imgOrg = loadprepareimage(args,(416,416))
im_input = Array{Float32}(undef,416,416,3,1)
im_input[:,:,:,1] = permutedims(collect(channelview(im)),[2,3,1])
imgOrg = Array{RGB4{Float64},2}(imgOrg)
push!(inRes,im_input)
push!(imgs,imgOrg)
end
function prepareinput(inArr)
inRes = Array{Array{Float32,4},1}()
imgs= []
println("Pre-processing images")
progress!(prepInput(inRes,imgs,inArr))
println("Pre-processing done")
return cat(inRes...,dims=4),imgs
end
preplabels(labArr,labRes) =(preplabels!(args,labRes) for args in labArr)
#prepares labels
function preplabels!(args,labRes)
toPush = []
xdoc = parse_file(args)
xroot = root(xdoc)
ces = get_elements_by_tagname(xroot, "size")
width = parse(Int32,content(find_element(ces[1], "width")))
height = parse(Int32,content(find_element(ces[1], "height")))
push!(toPush,width)
push!(toPush,height)
ces = get_elements_by_tagname(xroot, "object")
for i in 1:length(ces)
obj = []
name= content(find_element(ces[i], "name"))
difficult = content(find_element(ces[i], "difficult"))
if difficult == "0"
totaldic[name] = totaldic[name] + 1
#get xmin xmax ymin ymax
xmin = parse(Int32,content(find_element(find_element(ces[i], "bndbox"),"xmin")))
xmax = parse(Int32,content(find_element(find_element(ces[i], "bndbox"),"xmax")))
ymin = parse(Int32,content(find_element(find_element(ces[i], "bndbox"),"ymin")))
ymax = parse(Int32,content(find_element(find_element(ces[i], "bndbox"),"ymax")))
push!(obj,xmin)
push!(obj,ymin)
push!(obj,xmax-xmin)
push!(obj,ymax-ymin)
push!(obj,name)
push!(toPush,obj)
end
end
push!(labRes,toPush)
end
function preparelabels(labArr)
labRes = []
println("Preparing labels...")
progress!(preplabels(labArr,labRes))
println("Labels are done")
return labRes
end
arrlabels(lab,size) =(arrlabels!(args,size) for args in lab)
function arrlabels!(args,size)
w = args[1]
h = args[2]
for k in 3:length(args)
m = max(w,h)
rate = size/m
if w >= h
pad = floor((size - h*rate)/2)
args[k][1] = floor(args[k][1]*rate)
args[k][2] = floor(args[k][2]*rate) + pad
args[k][3] = floor(args[k][3]*rate)
args[k][4] = floor(args[k][4]*rate)
else
pad = floor((size - w*rate)/2)
args[k][1] = floor(args[k][1]*rate) + pad
args[k][2] = floor(args[k][2]*rate)
args[k][3] = floor(args[k][3]*rate)
args[k][4] = floor(args[k][4]*rate)
end
end
end
# return all tupples as(ImageWidth, ImageHeight,[x,y,objectWidth,objectHeight],ImageHeight,[x,y,objectWidth,objectHeight]..)
function arrangelabels(lab,size)
println("Arranging labels...")
progress!(arrlabels(lab,size))
println("Labels are arranged")
return lab
end
#prepares an image as given shapes
function loadprepareimage(img_path::String,img_shape::Tuple{Int,Int})
#Extract image
img = load(img_path)
img_originalsize = size(img)
if img_originalsize[1] > img_originalsize[2]
img_size = (img_shape[1],floor(Int,img_shape[2]*(img_originalsize[2]/img_originalsize[1])))
else
img_size = (floor(Int,img_shape[1]*(img_originalsize[1]/img_originalsize[2])),img_shape[2])
end
# Resize after blurring to prevent aliasing
σ = map((o,n)->0.75*o/n, size(img), img_size)
kern = KernelFactors.gaussian(σ) # from ImageFiltering
imgr = imresize(imfilter(img, kern, NA()), img_size)
# Determine top and left padding
vpad_top = floor(Int,(img_shape[1]-img_size[1])/2)
hpad_left = floor(Int,(img_shape[2]-img_size[2])/2)
# Determine bottom and right padding accounting for rounding of top and left (to ensure accuate result image size if source has odd dimensions)
vpad_bottom = img_shape[1] - (vpad_top + img_size[1])
hpad_right = img_shape[2] - (hpad_left + img_size[2])
padding = [hpad_left,vpad_top,hpad_right,vpad_bottom]
# Pad image
imgrp = padarray(imgr, Fill(ColorTypes.RGB(0.0,0.0,0.0),(vpad_top,hpad_left),(vpad_bottom,hpad_right)))
return imgrp, img_size, img_originalsize, padding,img
end