-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathopt_from_mem.lyx
361 lines (291 loc) · 7.05 KB
/
opt_from_mem.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass optbook
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Optimization from Membership via Sampling
\end_layout
\begin_layout Standard
In this chapter, we assumed the oracle can be computed exactly.
However, it is still open to determine the best runtime for reductions
between
\emph on
noisy
\emph default
oracles, where the oracle provides answers to within some bounded error.
In particular, the question about minimizing (approximately) convex functions
under noisy oracles is an active research area, and the gaps between the
lower bound and upper bound for many problems are still quite large (
\begin_inset CommandInset citation
LatexCommand cite
key "belloni2015escaping,Feldman2015statistical,bubeck2016kernel"
literal "true"
\end_inset
based on
\begin_inset CommandInset citation
LatexCommand cite
key "Kalai2006simulated"
literal "false"
\end_inset
).
We will see these methods in detail later.
For now, to put them in the context of oracles, we just discuss the following
theorem.
\end_layout
\begin_layout Theorem
\begin_inset Argument 1
status open
\begin_layout Plain Layout
OPT via sampling
\end_layout
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "thm:OPTviaSampling"
\end_inset
Let
\begin_inset Formula $F(x)=e^{-\alpha c^{T}x}1_{K}(x)$
\end_inset
for some convex set
\begin_inset Formula $K$
\end_inset
in
\begin_inset Formula $\R^{n}$
\end_inset
and vector
\begin_inset Formula $c\in\R^{n}.$
\end_inset
Suppose
\begin_inset Formula $\min_{x\in K}c^{T}x$
\end_inset
is bounded.
Let x be a random sample from the distribution with density proportional
to
\begin_inset Formula $F(x)$
\end_inset
.
Then,
\begin_inset Formula
\[
\E\left(c^{T}x\right)\le\min_{K}c^{T}x+\frac{n}{\alpha}.
\]
\end_inset
\end_layout
\begin_layout Proof
We will show that the worst case is when the convex set
\begin_inset Formula $K$
\end_inset
is an infinite cone.
WLOG assume that the minimum is at
\begin_inset Formula $x=0.$
\end_inset
Replace every cross-section of
\begin_inset Formula $K$
\end_inset
along
\begin_inset Formula $c$
\end_inset
with an
\begin_inset Formula $(n-1)$
\end_inset
-dimensional ball of the same volume as the cross-section.
This does not affect the expectation.
Suppose the expectation is
\begin_inset Formula $\E(c^{T}x)=a$
\end_inset
.
Next, replace the subset of
\begin_inset Formula $K$
\end_inset
with
\begin_inset Formula $c^{T}x\le a$
\end_inset
with a cone whose base is the cross-section at
\begin_inset Formula $a$
\end_inset
and apex is at zero.
This only makes the expectation larger.
Next, replace the subset of
\begin_inset Formula $K$
\end_inset
on the right of
\begin_inset Formula $a$
\end_inset
with the infinite conical extension of the cone to the left of
\begin_inset Formula $a$
\end_inset
.
Again, this expectation can only be higher.
\begin_inset Note Note
status open
\begin_layout Plain Layout
add figure!
\end_layout
\end_inset
\end_layout
\begin_layout Proof
Now for this infinite cone, we compute, using
\begin_inset Formula $y=c^{T}x$
\end_inset
,
\begin_inset Formula
\begin{align*}
\E\left(c^{T}x\right) & =\frac{\int_{0}^{\infty}ye^{-\alpha y}y^{n-1}\,dy}{\int_{0}^{\infty}e^{-\alpha y}y^{n-1}\,dy}\\
& =\frac{1}{\alpha}\frac{\int_{0}^{\infty}e^{-y}y^{n}\,dy}{\int_{0}^{\infty}e^{-y}y^{n-1}\,dy}\\
& =\frac{1}{\alpha}\frac{n!}{(n-1)!}=\frac{n}{\alpha}.
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
The theorem says that if we sample according to
\begin_inset Formula $e^{-\alpha c^{T}x}$
\end_inset
for
\begin_inset Formula $\alpha=n/\varepsilon$
\end_inset
, we will get an
\begin_inset Formula $\varepsilon$
\end_inset
-approximation to the optimum.
However, sampling from such a density is not trivial.
Instead, we will have to go through a sequence of overlapping distributions,
starting with one that is easy to sample and ending with a distribution
that is focused close to the minimum.
This method is known as
\emph on
simulated annearling
\emph default
and is the subject of Chapter
\begin_inset CommandInset ref
LatexCommand ref
reference "chap:Annealing"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
The complexity of sampling is polynomial in the dimension and logarithmic
in a suitable notion of probabilistic distance between the starting distributio
n and the target distribution.
The sampling algorithm only uses a membership (EVAL) oracle.
\end_layout
\begin_layout Exercise
Extend Theorem
\begin_inset CommandInset ref
LatexCommand ref
reference "thm:OPTviaSampling"
plural "false"
caps "false"
noprefix "false"
\end_inset
by replacing
\begin_inset Formula $c^{T}x$
\end_inset
with any convex function
\begin_inset Formula $f(x)$
\end_inset
.
\end_layout
\begin_layout Problem*
Given an approximately convex function
\begin_inset Formula $F$
\end_inset
on unit ball such that
\begin_inset Formula $\max_{\norm x_{2}\leq1}|f(x)-F(x)|\leq\varepsilon/n$
\end_inset
for some convex function
\begin_inset Formula $f$
\end_inset
, how efficiently can we find
\begin_inset Formula $x$
\end_inset
in the unit ball such that
\begin_inset Formula $F(x)\leq\min_{\norm x_{2}\leq1}F(x)+O(\varepsilon)$
\end_inset
? The current fastest algorithm takes
\begin_inset Formula $O(n^{4}\log^{O(1)}(n/\varepsilon))$
\end_inset
calls to the noisy EVAL oracle for
\begin_inset Formula $F$
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
Reference?
\end_layout
\end_inset
.
\end_layout
\end_body
\end_document