-
in
mathcomp_extra.v
:- lemmas
prodr_ile1
,nat_int
- lemmas
-
in
normedtype.v
:- lemma
scaler1
- lemma
-
in
derive.v
:- lemmas
horner0_ext
,hornerD_ext
,horner_scale_ext
,hornerC_ext
,derivable_horner
,derivE
,continuous_horner
- instance
is_derive_poly
- lemmas
-
in
lebesgue_integral.v
:- lemmas
integral_fin_num_abs
,Rintegral_cst
,le_Rintegral
- lemmas
-
new file
pi_irrational.v
:- lemmas
measurable_poly
- definition
rational
- module
pi_irrational
- lemma
pi_irrationnal
- lemmas
-
in
numfun.v
- lemmas
funeposE
,funenegE
,funepos_comp
,funeneg_comp
- lemmas
-
in
classical_sets.v
:- lemmas
xsectionE
,ysectionE
- lemmas
-
in
lebesgue_integrale.v
- change implicits of
measurable_funP
- change implicits of
-
in
derive.v
:- put the notation
^`()
and^`( _ )
in scopeclassical_set_scope
- put the notation
-
in
numfun.v
- lock
funepos
,funeneg
- lock
-
moved from
lebesgue_integral.v
tomeasure.v
and generalized- lemmas
measurable_xsection
,measurable_ysection
- lemmas
- in
measure.v
preimage_class
->preimage_set_system
image_class
->image_set_system
preimage_classes
->g_sigma_preimageU
preimage_class_measurable_fun
->preimage_set_system_measurable_fun
sigma_algebra_preimage_class
->sigma_algebra_preimage
sigma_algebra_image_class
->sigma_algebra_image
sigma_algebra_preimage_classE
->g_sigma_preimageE
preimage_classes_comp
->g_sigma_preimageU_comp