-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
229 lines (220 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from __future__ import print_function
import datetime
import argparse
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import os
import math
from data_loader import *
import models
import numpy as np
from torch.utils import model_zoo
import torch.nn as nn
from torch import optim
from tensorboardX import SummaryWriter
import warnings
from MulticoreTSNE import MulticoreTSNE as TSNE
from matplotlib import pyplot as plt
from PIL import Image
from torchvision import transforms
from easydl import *
warnings.filterwarnings("ignore", category=UserWarning)
# Training settings
num_experiments = 1
batch_size = 32
max_iter = 5000
lr = 0.01
momentum = 0.9
no_cuda =False
seed = 999
l2_decay = 5e-4
num_classes = 31
dim_structure = 1000
alpha = 5
structure_regulizer = 10
root_path = "/data1/yinmingyue/Datasets/Office/domain_adaptation_images"
source_name = "amazon/images" # amazon dslr webcam
target_name = "dslr/images"
os.environ["CUDA_VISIBLE_DEVICES"] = "5"
cuda = not no_cuda and torch.cuda.is_available()
device_ids = [0]
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed(seed)
kwargs = {'num_workers': 4, 'pin_memory': False} if cuda else {}
source_loader = load_training(root_path, source_name, batch_size, kwargs)
target_train_loader = load_training(root_path, target_name, batch_size, kwargs)
target_test_loader = load_testing(root_path, target_name, batch_size, kwargs)
len_source_dataset = len(source_loader.dataset)
len_target_dataset = len(target_test_loader.dataset)
len_source_loader = len(source_loader)
len_target_loader = len(target_train_loader)
now = datetime.datetime.now().strftime('%b%d_%H-%M-%S')
log_dir = f'log/{now}'
writer = SummaryWriter(log_dir)
scheduler = lambda global_step, lr: inverseDecaySheduler(global_step, lr, gamma=10, power=0.75, max_iter=max_iter)
def train(epoch, feature_extractor,classifier, Metric_Generator, Discriminator):
i = 1
global_step = (epoch - 1) * len_source_loader + i
# LEARNING_RATE = scheduler(global_step, lr)
LEARNING_RATE = lr
print("learning rate:", LEARNING_RATE)
if torch.cuda.device_count() > 1:
optimizer = torch.optim.SGD([
{'params': feature_extractor.module.parameters(), 'lr': LEARNING_RATE / 10},
{'params': classifier.module.parameters(), 'lr': LEARNING_RATE},
{'params': Metric_Generator.module.parameters(), 'lr': LEARNING_RATE},
{'params': Discriminator.module.parameters(), 'lr': LEARNING_RATE},
], lr=LEARNING_RATE, momentum=momentum, weight_decay=l2_decay, nesterov=True)
else:
optimizer = torch.optim.SGD([
{'params': feature_extractor.parameters(), 'lr': LEARNING_RATE / 10},
{'params': classifier.parameters(), 'lr': LEARNING_RATE},
{'params': Metric_Generator.parameters(), 'lr': LEARNING_RATE},
{'params': Discriminator.parameters(), 'lr': LEARNING_RATE},
], lr=LEARNING_RATE, momentum=momentum, weight_decay=l2_decay, nesterov=True)
data_source_iter = iter(source_loader)
data_target_iter = iter(target_train_loader)
while i <= len_source_loader:
### initialization ###
classifier.train()
source_data, source_label = data_source_iter.next()
triplet_loss = torch.zeros(1)
margin = alpha * torch.ones(num_classes)
if cuda:
source_data, source_label = source_data.cuda(), source_label.cuda()
triplet_loss, margin = triplet_loss.cuda(), margin.cuda()
source_data, source_label = Variable(source_data), Variable(source_label)
### source feature extract and domain output ###
feature_src = feature_extractor(source_data)
clabel_src = classifier(feature_src)
clabel_src = F.softmax(clabel_src)
structure_src = Metric_Generator(feature_src)
structure_regulize_loss = torch.mean((Metric_Generator(feature_src.detach()).norm(2,dim=1)-structure_regulizer)**2)
discriminator_src = Discriminator(feature_src)
label_loss = F.nll_loss(clabel_src.log(), source_label)
### target feature extract and domain output ###
target_data, target_label = data_target_iter.next()
if i % len_target_loader == 0:
data_target_iter = iter(target_train_loader)
if cuda:
target_data, target_label = target_data.cuda(), target_label.cuda()
target_data = Variable(target_data)
feature_tgt = feature_extractor(target_data)
clabel_tgt = classifier(feature_tgt)
clabel_tgt = F.softmax(clabel_tgt)
discriminator_tgt = Discriminator(feature_tgt)
with torch.no_grad():
### update alpha to punish samples around the classification boundry ###
for batch_index in range(batch_size):
pseudo_label = clabel_tgt[batch_index].max(dim=-1)[1]
subpeak_softmax = torch.sort(clabel_tgt[batch_index], dim=-1, descending=True)[0][1].detach()
margin[pseudo_label] += subpeak_softmax * num_classes
### metric learning ###
for batch_index in range(batch_size):
true_label = source_label[batch_index]
same_category = torch.eq(source_label,source_label[batch_index]).type(torch.FloatTensor).cuda().detach()
different_category = torch.eq(same_category,-same_category).type(torch.FloatTensor).cuda().detach()
max_same_distance = torch.max(same_category * torch.norm((structure_src - structure_src[batch_index]),dim=1))[0]
min_confused_distance = torch.min(different_category * torch.norm((structure_src - structure_src[batch_index]),dim=1) + 1e2 * same_category,dim=-1)[0]
distance_discrepancy = max_same_distance - min_confused_distance + margin[source_label[batch_index]]
if distance_discrepancy > 0:
triplet_loss += distance_discrepancy
triplet_loss = triplet_loss/batch_size
discriminator_loss = nn.BCELoss()(discriminator_src, torch.ones_like(discriminator_src)) \
+ nn.BCELoss()(discriminator_tgt, torch.zeros_like(discriminator_tgt))
target_entropy_loss = -torch.mean((clabel_tgt * torch.log(clabel_tgt + 1e-6)).sum(dim=1))
total_loss = label_loss + discriminator_loss + 0.08 * triplet_loss + 0.1 * target_entropy_loss
print('Epoch: [{}/{}], iter: [{}/{}],max same/min different distance:[{:.2f}/{:.2f}], max margin:[{:.2f}]'
.format(epoch, epochs, i, len_source_loader, max_same_distance, min_confused_distance, margin.max(-1)[0]))
## Training shared network and label classifier ###
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
optimizer.zero_grad()
### write summary of loss and feature map ###
if i % len_source_loader == 0:
writer.add_scalar('loss/source_label_loss', label_loss.data[0], (epoch - 1) * len_source_loader + i)
writer.add_scalar('loss/target_entropy_loss', target_entropy_loss.data[0],
(epoch - 1) * len_source_loader + i)
writer.add_scalar('loss/discriminator_loss', discriminator_loss.data[0],
(epoch - 1) * len_source_loader + i)
writer.add_scalar('loss/triplet_loss', triplet_loss.data[0],
(epoch - 1) * len_source_loader + i)
writer.add_scalar('loss/structure_regulize_loss', structure_regulize_loss.data[0],
(epoch - 1) * len_source_loader + i)
### test model accuracy ###
if epoch % 1 == 0 and i % len_source_loader == 0:
with torch.no_grad():
true_correct, average_acc, Dict_acc = test(feature_extractor,classifier, epoch)
t_correct_true = 0
t_correct_average = 0
if true_correct > t_correct_true:
t_correct_true = true_correct
if average_acc > t_correct_average:
t_correct_average = average_acc
print(
'Experi-No: {}, source: {} to target: {}, max correct: {}, max true accuracy: {:.2f}%, max average accuracy: {:.2f}%\n'.format(
ex + 1, source_name[:-7], target_name[:-7], t_correct_true, 100. * t_correct_true / len_target_dataset, t_correct_average))
writer.add_scalar('accuracy/target_average_correct', t_correct_average, (epoch-1) * len_source_loader + i)
i = i + 1
def test(feature_extractor,classifier, epoch):
classifier.eval()
test_loss = 0
correct = 0
Dict_all = list(np.zeros(num_classes))
Dict_acc = list(np.zeros(num_classes))
for target_data, target_label in target_test_loader:
target_label = target_label.long()
if cuda:
target_data, target_label = target_data.cuda(), target_label.cuda()
target_data, target_label = Variable(target_data), Variable(target_label)
feature = feature_extractor(target_data)
out_tgt = classifier(feature)
out_tgt = F.softmax(out_tgt)
test_loss += F.nll_loss(out_tgt.log(), target_label, size_average=False).data[0] # sum up batch loss
pred = out_tgt.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target_label.data.view_as(pred)).cpu().sum()
target_label = target_label.data.cpu()
pred = pred.data.cpu()
for j in range(target_label.numpy().shape[0]):
Dict_all[target_label[j].item()] += 1
if target_label[j] == pred[j]:
Dict_acc[pred[j].item()] += 1
test_loss /= len_target_dataset
for j in range(len(Dict_all)):
Dict_acc[j] = Dict_acc[j] / Dict_all[j] * 100.
all_acc =0
for i in range(len(Dict_acc)):
all_acc += Dict_acc[i]
average_acc = all_acc/num_classes
print('average_acc: ', average_acc)
return correct, average_acc, Dict_acc
if __name__ == '__main__':
true_accuracy = list(np.zeros(num_experiments))
true_acc_max = list(np.zeros(num_experiments))
avg_accuracy = list(np.zeros(num_experiments))
avg_acc_max = list(np.zeros(num_experiments))
class_list = list(np.zeros(num_experiments))
for ex in range(num_experiments):
feature_extractor = models.resnet50(pretrained=True)
classifier = models.FClayers(out_dim=num_classes)
Metric_Generator = models.FClayers(out_dim=dim_structure)
Discriminator = models.AdversarialNetwork(2048)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 1:
feature_extractor = torch.nn.DataParallel(feature_extractor, device_ids)
classifier = torch.nn.DataParallel(classifier, device_ids)
Metric_Generator = torch.nn.DataParallel(Metric_Generator, device_ids)
Discriminator = torch.nn.DataParallel(Discriminator, device_ids)
if cuda:
feature_extractor = feature_extractor.cuda(device=device_ids[0])
classifier = classifier.cuda(device=device_ids[0])
Metric_Generator = Metric_Generator.cuda(device=device_ids[0])
Discriminator = Discriminator.cuda(device=device_ids[0])
epochs = torch.LongTensor([max_iter / len_source_loader]).data[0]
print('Total Epochs: [{}]'.format(epochs))
for epoch in range(1, epochs + 1):
train(epoch, feature_extractor,classifier, Metric_Generator, Discriminator)