forked from davidiommi/3D-CycleGan-Pytorch-MedImaging
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_loader_patches.py
80 lines (62 loc) · 2.99 KB
/
check_loader_patches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import matplotlib.pyplot as plt
from utils.NiftiDataset import *
from torch.utils.data import DataLoader
import utils.NiftiDataset as NiftiDataset
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--data_path", type=str, default='./Data_folder/train/')
parser.add_argument("--resample", action='store_true', default=False, help='Decide or not to resample the images to a new resolution')
parser.add_argument("--new_resolution", type=float, default=(0.5, 0.5, 0.5), help='New resolution')
parser.add_argument("--patch_size", type=int, nargs=3, default=[128, 128, 64], help="Input dimension for the generator")
parser.add_argument("--batch_size", type=int, nargs=1, default=1, help="Batch size to feed the network (currently supports 1)")
parser.add_argument("--drop_ratio", type=float, nargs=1, default=0, help="Probability to drop a cropped area if the label is empty. All empty patches will be dropped for 0 and accept all cropped patches if set to 1")
parser.add_argument("--min_pixel", type=int, nargs=1, default=0.4, help="Percentage of minimum non-zero pixels in the cropped label")
args = parser.parse_args()
min_pixel = int(args.min_pixel*((args.patch_size[0]*args.patch_size[1]*args.patch_size[2])/100))
trainTransforms = [
NiftiDataset.Resample(args.new_resolution, args.resample),
# NiftiDataset.Registration(),
# NiftiDataset.Align(),
# NiftiDataset.Augmentation(),
# NiftiDataset.Padding((300, 300, 300)),
NiftiDataset.RandomCrop((args.patch_size[0], args.patch_size[1], args.patch_size[2]),
args.drop_ratio, min_pixel)
]
train_gen = NifitDataSet(args.data_path, which_direction='AtoB', transforms=trainTransforms, shuffle_labels=True, train=True)
print('lenght train list:',len(train_gen))
train_loader = DataLoader(train_gen, batch_size=args.batch_size, shuffle=True)
class IndexTracker(object):
def __init__(self, ax, X):
self.ax = ax
ax.set_title('use scroll wheel to navigate images')
self.X = X
rows, cols, self.slices = X.shape
self.ind = self.slices//2
self.im = ax.imshow(self.X[:, :, self.ind],cmap= 'gray')
self.update()
def onscroll(self, event):
print("%s %s" % (event.button, event.step))
if event.button == 'up':
self.ind = (self.ind + 1) % self.slices
else:
self.ind = (self.ind - 1) % self.slices
self.update()
def update(self):
self.im.set_data(self.X[:, :, self.ind])
self.ax.set_ylabel('slice %s' % self.ind)
self.im.axes.figure.canvas.draw()
def plot3d(image):
original=image
original = np.rot90(original, k=-1)
fig, ax = plt.subplots(1, 1)
tracker = IndexTracker(ax, original)
fig.canvas.mpl_connect('scroll_event', tracker.onscroll)
plt.show()
batch1 = train_loader.dataset[random.randint(0, len(train_gen) - 1)]
vol = batch1[0].numpy()
mask = batch1[1].numpy()
print(vol.shape)
vol = np.squeeze(vol, axis=0)
mask = np.squeeze(mask, axis=0)
plot3d(vol)
plot3d(mask)