forked from iqiukp/KPCA-MATLAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemoKernelMatrix.m
43 lines (32 loc) · 1.31 KB
/
demoKernelMatrix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
%{
Examples for using Class KernnelMatrix
kernel = Kernel('type', 'gauss', 'width', 2);
kernel = Kernel('type', 'exp', 'width', 2);
kernel = Kernel('type', 'linear', 'offset', 0);
kernel = Kernel('type', 'lapl', 'width', 2);
kernel = Kernel('type', 'sigm', 'gamma', 0.1, 'offset', 0);
kernel = Kernel('type', 'poly', 'degree', 2, 'offset', 0);
%}
clc
clear class
addpath(genpath(pwd))
x = rand(20, 3);
y = rand(20, 3);
% compute kernel matrix using gaussian kernel function
kernel = Kernel('type', 'gauss', 'width', 2);
kernelmatrix1 = kernel.getKernelMatrix(x, y);
% compute kernel matrix using exponential kernel function
kernel = Kernel('type', 'exp', 'width', 2);
kernelmatrix2 = kernel.getKernelMatrix(x, y);
% compute kernel matrix using linear kernel function
kernel = Kernel('type', 'linear', 'offset', 0);
kernelmatrix3 = kernel.getKernelMatrix(x, y);
% compute kernel matrix using laplacian kernel function
kernel = Kernel('type', 'lapl', 'width', 2);
kernelmatrix4 = kernel.getKernelMatrix(x, y);
% compute kernel matrix using sigmoid kernel function
kernel = Kernel('type', 'sigm', 'gamma', 0.1, 'offset', 0);
kernelmatrix5 = kernel.getKernelMatrix(x, y);
% compute kernel matrix using polynomial kernel function
kernel = Kernel('type', 'poly', 'degree', 2, 'offset', 0);
kernelmatrix6 = kernel.getKernelMatrix(x, y);