-
Notifications
You must be signed in to change notification settings - Fork 272
/
Copy pathalign_face.py
50 lines (38 loc) · 1.92 KB
/
align_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import dlib
from pathlib import Path
import argparse
import torchvision
from utils.drive import open_url
from utils.shape_predictor import align_face
import PIL
parser = argparse.ArgumentParser(description='Align_face')
parser.add_argument('-unprocessed_dir', type=str, default='unprocessed', help='directory with unprocessed images')
parser.add_argument('-output_dir', type=str, default='input/face', help='output directory')
parser.add_argument('-output_size', type=int, default=1024, help='size to downscale the input images to, must be power of 2')
parser.add_argument('-seed', type=int, help='manual seed to use')
parser.add_argument('-cache_dir', type=str, default='cache', help='cache directory for model weights')
###############
parser.add_argument('-inter_method', type=str, default='bicubic')
args = parser.parse_args()
cache_dir = Path(args.cache_dir)
cache_dir.mkdir(parents=True, exist_ok=True)
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True,exist_ok=True)
print("Downloading Shape Predictor")
f=open_url("https://drive.google.com/uc?id=1huhv8PYpNNKbGCLOaYUjOgR1pY5pmbJx", cache_dir=cache_dir, return_path=True)
predictor = dlib.shape_predictor(f)
for im in Path(args.unprocessed_dir).glob("*.*"):
faces = align_face(str(im),predictor)
for i,face in enumerate(faces):
if(args.output_size):
factor = 1024//args.output_size
assert args.output_size*factor == 1024
face_tensor = torchvision.transforms.ToTensor()(face).unsqueeze(0).cuda()
face_tensor_lr = face_tensor[0].cpu().detach().clamp(0, 1)
face = torchvision.transforms.ToPILImage()(face_tensor_lr)
if factor != 1:
face = face.resize((args.output_size, args.output_size), PIL.Image.LANCZOS)
if len(faces) > 1:
face.save(Path(args.output_dir) / (im.stem+f"_{i}.png"))
else:
face.save(Path(args.output_dir) / (im.stem + f".png"))