-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
284 lines (262 loc) · 9.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import argparse
import sys
from copy import copy
from numpy import mean
from LossNet import L1_Advanced_Sobel_Loss
from dataset import *
from log import Logger
from model import *
from paddle.metric import Metric
import paddle
import numpy as np
import math
import warnings
import datetime
from utils import load_pretrained_model, psnr
warnings.filterwarnings('ignore')
def parse_args():
parser = argparse.ArgumentParser(description='Model training')
parser.add_argument(
'--dataset_root',
dest='dataset_root',
help='The path of dataset root',
type=str,
default='data/data121607/data/train')
parser.add_argument(
'--valset_root',
dest='valset_root',
help='The path of valset root',
type=str,
default=None)
parser.add_argument(
'--batch_size',
dest='batch_size',
help='batch_size',
type=int,
default=32
)
parser.add_argument(
'--start_epoch',
dest='start_epoch',
help='start_epoch',
type=int,
default=0
)
parser.add_argument(
'--max_epochs',
dest='max_epochs',
help='max_epochs',
type=int,
default=100
)
parser.add_argument(
'--down_lr_epochs',
dest='down_lr_epochs',
help='after how many epochs,divide your learning rate by 5',
type=int,
default=10
)
parser.add_argument(
'--learning_rate',
dest='learning_rate',
help='define learning rate',
type=float,
default=2e-4,
)
parser.add_argument(
'--log_iters',
dest='log_iters',
help='log_iters',
type=int,
default=10
)
parser.add_argument(
'--save_interval',
dest='save_interval',
help='save_interval',
type=int,
default=1
)
parser.add_argument(
'--sample_interval',
dest='sample_interval',
help='sample_interval',
type=int,
default=100
)
parser.add_argument(
'--seed',
dest='seed',
help='random seed',
type=int,
default=1234
)
parser.add_argument(
'--pretrained',
dest='pretrained',
help='The pretrained of model',
type=str,
default=None)
parser.add_argument(
'--weight_decay',
dest='weight_decay',
help='weight_decay',
type=float,
default=0.0
)
parser.add_argument(
'--use_elastic',
dest='use_elastic',
help='use_elastic',
action='store_true'
)
parser.add_argument(
'--crop_center',
dest='crop_center',
help='crop_center',
action='store_true'
)
parser.add_argument(
'--use_mosaic',
dest='use_mosaic',
help='use_mosaic or not',
action='store_true',
)
return parser.parse_args()
def sample_images(epoch, i, real_A, real_B, fake_B):
data, pred, label = real_A * 255, fake_B * 255, real_B * 255
pred = paddle.clip(pred.detach(), 0, 255)
data = data.cast('int64')
pred = pred.cast('int64')
label = label.cast('int64')
h, w = pred.shape[-2], pred.shape[-1]
img = np.zeros((h, 1 * 3 * w, 3))
for idx in range(0, 1):
row = idx * h
tmplist = [data[idx], pred[idx], label[idx]]
for k in range(3):
col = k * w
tmp = np.transpose(tmplist[k], (1, 2, 0))
img[row:row + h, col:col + w] = np.array(tmp)
img = img.astype(np.uint8)
img = Image.fromarray(img)
if not os.path.exists("./train_result"):
os.makedirs("./train_result")
img.save("./train_result/%03d_%06d.png" % (epoch, i))
def main(args):
paddle.disable_static()
sys.stdout = Logger("./work/train.log")
train_dataset = ImageDataset(root=args.dataset_root, training=True, val=False, use_elastic=args.use_elastic,
crop_center=args.crop_center)
valid_dataset = ImageDataset(root=args.valset_root, training=True, val=True)
train_loader = DataLoader(dataset=train_dataset, shuffle=True, batch_size=args.batch_size,
num_workers=1)
val_loader = DataLoader(dataset=valid_dataset, shuffle=True, batch_size=1,
num_workers=1)
print('loaded dataset successfully!')
print(f'the number of training set images: {train_dataset.__len__()}')
# 预计模型结构生成模型对象,便于进行后续的配置、训练和验证
multi_output = True
model = MBCNN(64, multi_output) # MBCNN-light: model = MBCNN(32,multi_output)
if args.pretrained is not None:
load_pretrained_model(model, args.pretrained)
optimizer = paddle.optimizer.Adam(learning_rate=args.learning_rate, parameters=model.parameters(),
beta1=0.5, beta2=0.999, weight_decay=args.weight_decay)
# 设置损失函数
loss_fn = paddle.nn.L1Loss(reduction='mean')
loss_asl = L1_Advanced_Sobel_Loss()
val_loss_list = [] # 记录验证机loss
prev_time = time.time()
coef = 0.25
min_val_loss = 1e9
min_val_loss_epoch = args.start_epoch
for epoch in range(args.start_epoch + 1, args.max_epochs + 1):
model.train()
# 连续5个epoch loss不降或降幅过小,学习率减半
# if epoch - min_val_loss_epoch >= 10:
# optimizer.set_lr(optimizer.get_lr() / 2)
if (epoch - args.start_epoch) % args.down_lr_epochs == 0:
optimizer.set_lr(optimizer.get_lr() / 2)
for batch_id, data in enumerate(train_loader):
x_data = data[0] # 训练数据
y_data_list = data[1] # 训练数据标签
# x_data=paddle.ones(shape=[2, 3,256,256])
# y_data=paddle.ones(shape=[1, 128,128,128])
z3, z2, z1 = model(x_data) # 预测结果
y_data_1, y_data_2, y_data_3 = y_data_list
loss1 = loss_fn(z1, y_data_1) + coef * loss_asl(z1, y_data_1)
loss2 = loss_fn(z2, y_data_2) + coef * loss_asl(z2, y_data_2)
loss3 = loss_fn(z3, y_data_3) + coef * loss_asl(z3, y_data_3)
# loss4 = loss_fn(z4, y_data_4) + coef * loss_asl(z4, y_data_4)
loss = loss1 + loss2 + loss3
# 计算损失 等价于 prepare 中loss的设置
loss.backward()
optimizer.step()
# 梯度清零
optimizer.clear_grad()
model.clear_gradients()
batches_done = epoch * len(train_loader) + batch_id
batches_left = args.max_epochs * len(train_loader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
if batch_id % args.log_iters == 0:
print('')
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [loss: %f] [loss1: %f] [loss2: %f] [loss3: %.7f] [lr: %f] ETA: %s" %
(epoch, args.max_epochs,
batch_id, len(train_loader),
loss.numpy()[0],
loss1.numpy()[0],
loss2.numpy()[0],
loss3.numpy()[0],
# loss4.numpy()[0],
optimizer.get_lr(),
time_left))
if batch_id % args.sample_interval == 0:
sample_images(epoch, batch_id, x_data, y_data_1, z1)
if epoch % args.save_interval == 0:
current_save_dir = os.path.join("train_result", "model", f'epoch_{epoch}')
if not os.path.exists(current_save_dir):
os.makedirs(current_save_dir)
paddle.save(model.state_dict(),
os.path.join(current_save_dir, 'model.pdparams'))
paddle.save(optimizer.state_dict(),
os.path.join(current_save_dir, 'model.pdopt'))
if val_loader is not None:
loss_list = []
loss_1_list = []
PSNR_list = []
for id, val_batch in enumerate(val_loader):
model.eval()
x_data = val_batch[0]
y_data_list = val_batch[1]
z3, z2, z1 = model(x_data) # 预测结果
y_data_1, y_data_2, y_data_3 = y_data_list
loss1 = loss_fn(z1, y_data_1) + coef * loss_asl(z1, y_data_1)
loss2 = loss_fn(z2, y_data_2) + coef * loss_asl(z2, y_data_2)
loss3 = loss_fn(z3, y_data_3) + coef * loss_asl(z3, y_data_3)
# loss4 = loss_fn(z4, y_data_4) + coef * loss_asl(z4, y_data_4)
loss = loss1 + loss2 + loss3
loss_list.append(loss.numpy()[0])
loss_1_list.append(loss1.numpy()[0])
model.clear_gradients()
PSNR = psnr(y_data_1, z1)
PSNR_list.append(PSNR)
if id % args.sample_interval == 0:
sample_images(epoch, id, x_data, y_data_1, z1)
val_loss = mean(np.array(loss_list), dtype=float).squeeze()
val_loss_list.append(val_loss)
if val_loss < min_val_loss:
min_val_loss_epoch = epoch
min_val_loss = val_loss
sys.stdout.write(
"\r validation loss:[Epoch %d/%d] [mean loss: %f] [mean PSNR: %f]" %
(epoch,
args.max_epochs,
mean(np.array(loss_list), dtype=float).squeeze(),
mean(np.array(PSNR_list), dtype=float).squeeze(),
))
# 更新参数
if __name__ == '__main__':
args = parse_args()
main(args)