-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference_trt.py
105 lines (87 loc) · 3.89 KB
/
inference_trt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import time
import cv2
import numpy as np
from exec_backends.trt_loader import TrtModelNMS
import torch
from utils import overlay, segment_everything
from ultralytics.yolo.engine.results import Results
from ultralytics.yolo.utils import ops
from random import randint
# from models.models import Darknet
retina_masks = True
conf = 0.25
iou = 0.7
agnostic_nms = False
def postprocess(preds, img, orig_imgs, retina_masks, conf, iou, agnostic_nms=False):
"""TODO: filter by classes."""
p = ops.non_max_suppression(preds[0],
conf,
iou,
agnostic_nms,
max_det=100,
nc=1)
results = []
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
for i, pred in enumerate(p):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
# path = self.batch[0]
img_path = "ok"
if not len(pred): # save empty boxes
results.append(Results(orig_img=orig_img, path=img_path, names="segment", boxes=pred[:, :6]))
continue
if retina_masks:
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
else:
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
results.append(
Results(orig_img=orig_img, path=img_path, names="1213", boxes=pred[:, :6], masks=masks))
return results
def pre_processing(img_origin, imgsz=1024):
h, w = img_origin.shape[:2]
if h>w:
scale = min(imgsz / h, imgsz / w)
inp = np.zeros((imgsz, imgsz, 3), dtype = np.uint8)
nw = int(w * scale)
nh = int(h * scale)
a = int((nh-nw)/2)
inp[: nh, a:a+nw, :] = cv2.resize(cv2.cvtColor(img_origin, cv2.COLOR_BGR2RGB), (nw, nh))
else:
scale = min(imgsz / h, imgsz / w)
inp = np.zeros((imgsz, imgsz, 3), dtype = np.uint8)
nw = int(w * scale)
nh = int(h * scale)
a = int((nw-nh)/2)
inp[a: a+nh, :nw, :] = cv2.resize(cv2.cvtColor(img_origin, cv2.COLOR_BGR2RGB), (nw, nh))
rgb = np.array([inp], dtype = np.float32) / 255.0
return np.transpose(rgb, (0, 3, 1, 2))
class FastSam(object):
def __init__(self,
model_weights = '/models/fastSAm_wrapper/fast_sam_1024.trt',
max_size = 1024):
self.imgsz = (max_size, max_size)
# Load model
self.model = TrtModelNMS(model_weights, max_size)
def segment(self, bgr_img):
## Padded resize
inp = pre_processing(bgr_img, self.imgsz[0])
## Inference
t1 = time.time()
print("[Input]: ", inp[0].transpose(0, 1, 2).shape)
preds = self.model.run(inp)
data_0 = torch.from_numpy(preds[5])
data_1 = [[torch.from_numpy(preds[2]), torch.from_numpy(preds[3]), torch.from_numpy(preds[4])], torch.from_numpy(preds[1]), torch.from_numpy(preds[0])]
preds = [data_0, data_1]
result = postprocess(preds, inp, bgr_img)
masks = result[0].masks.data
image_with_masks = segment_everything(bgr_img, result, input_size=self.imgsz)
cv2.imwrite(f"/models/FastSam/outputs/obj_segment_trt.png", image_with_masks)
return masks
if __name__ == '__main__':
model = FastSam(model_weights="/models/fastSAm_wrapper/fast_sam_1024.trt")
img = cv2.imread('/models/FastSam/images/cat.jpg')
masks = model.segment(img)
print("[Ouput]: ", masks.shape)