-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpt2onnx.py
135 lines (118 loc) · 4.92 KB
/
pt2onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from ultralytics import YOLO
# from utils.tools import *
import argparse
# from models.experimental import attempt_load
import torch.nn as nn
import torch
import onnx
import onnx_graphsurgeon as gs
# from models.yolo import SegmentationModel
import ast
class FastSamAddNMS(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
self.model.eval()
def forward(self, input):
"""
Split output [n_batch, 84, n_bboxes] to 3 output: bboxes, scores, classes
"""
# x, y, w, h -> x1, y1, x2, y2
output = self.model(input)
print('Output: ', len(output))
# print(len(output[1]))
# print(output[1].shape)
# print(output[0].shape)
# for x in output:
# if type(x).__name__ == 'tuple':
# print([y.shape for y in x])
# else:
# print('single ', x.shape)
# exit(1)
output = output[0]
print(output.shape)
exit(1)
output = output.permute(0, 2, 1)
print(output[0][0])
print("[INFO] Output's origin model shape: ", output.shape)
bboxes_x = output[..., 0:1]
bboxes_y = output[..., 1:2]
bboxes_w = output[..., 2:3]
bboxes_h = output[..., 3:4]
bboxes_x1 = bboxes_x - bboxes_w/2
bboxes_y1 = bboxes_y - bboxes_h/2
bboxes_x2 = bboxes_x + bboxes_w/2
bboxes_y2 = bboxes_y + bboxes_h/2
bboxes = torch.cat([bboxes_x1, bboxes_y1, bboxes_x2, bboxes_y2], dim = -1)
bboxes = bboxes.unsqueeze(2) # [n_batch, n_bboxes, 4] -> [n_batch, n_bboxes, 1, 4]
obj_conf = output[..., 4:]
scores = obj_conf
# cls_conf = output[..., 5:]
# scores = obj_conf * cls_conf # conf = obj_conf * cls_conf
print(scores)
print(bboxes)
return bboxes, scores
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='/data/disk1/hungpham/FastSAM/weights/FastSAM-x.pt', help='weights path')
# parser.add_argument('--cfg', type=str, default='cfg/yolo_nas.cfg', help='config path')
parser.add_argument('--output', type=str, default='/data/disk1/hungpham/FastSAM/weights/', help='output ONNX model path')
parser.add_argument('--max_size', type=int, default=416, help='max size of input image')
opt = parser.parse_args()
# model_cfg = opt.cfg
model_weights = opt.weights
output_model_path = opt.output
max_size = opt.max_size
device = torch.device("cpu")
# load model
print("[Info] Load Model")
# model = attempt_load(model_weights, device=device, inplace=True, fuse=True)
model_ = YOLO(model_weights)
# print(model_.__dict__)
model = model_.model
# print(model.__dict__)
# exit(1)
# print(model.shape)
# print(type(model))
# exit(1)
img = torch.zeros(1, 3, max_size, max_size).to(device)
# results = model_(
# "/data/disk1/hungpham/FastSAM/images/cat.jpg",
# imgsz=max_size,
# device=device,
# retina_masks=True,
# iou=0.9,
# conf=0.4,
# max_det=100,
# )
# print(results[0].masks.data.shape)
# exit(1)
print("[Info] Preprocess Model")
# model = FastSamAddNMS(model)
# exit(1)
output_names = ['output0', 'output1'] #if isinstance(model, SegmentationModel) else ['output0']
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# if isinstance(model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
model.eval().to(device)
# print(img)
# for _ in range(2):
# y = model(img) # dry runs
print('[INFO] Convert from Torch to ONNX')
# model_path = "/data/disk1/hungpham/FastSAM/weights/FastSAM-x.pt"
# model = YOLO(model_weights)
# model.to(device).eval()
torch.onnx.export(model, # model being run
img, # model input (or a tuple for multiple inputs)
output_model_path, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=11, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names = ['images'], # the model's input names
output_names = output_names # the model's output names
#dynamic_axes=dynamic
)
print('[INFO] Finished Convert!')