Skip to content

Latest commit

 

History

History
49 lines (39 loc) · 1.11 KB

README.md

File metadata and controls

49 lines (39 loc) · 1.11 KB

Code and Data for Paper "SOON: Scenario Oriented Object Navigation with Graph-based Exploration"

Environment Installation

Download Room-to-Room navigation data:

bash ./tasks/R2R/data/download.sh

Download image features for environments:

mkdir img_features
wget https://www.dropbox.com/s/715bbj8yjz32ekf/ResNet-152-imagenet.zip -P img_features/
cd img_features
unzip ResNet-152-imagenet.zip

Python requirements: Need python3.6 (python 3.5 should be OK since I removed the allennlp dependencies)

pip install -r python_requirements.txt

Install Matterport3D simulators:

git submodule update --init --recursive 
sudo apt-get install libjsoncpp-dev libepoxy-dev libglm-dev libosmesa6 libosmesa6-dev libglew-dev
mkdir build && cd build
cmake -DEGL_RENDERING=ON ..
make -j8

Code

Speaker Training

bash run/speaker.bash 0

0 is the id of GPU. It will train the speaker and save the snapshot under snap/speaker/

Agent Training

python3.6 -u r2r_src/train.py --dataset SOON --maxAction 20 --log_every 500 --rl_ml_weight 1 --det_loss

Evaluation

sh run/eval.sh