-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinteractive.py
36 lines (31 loc) · 1.55 KB
/
interactive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from vllm import LLM, SamplingParams
import gradio as gr
class ChatBot:
def __init__(self, model, tokenizer, sampling_params):
self.model = model
self.tokenizer = tokenizer
self.sampling_params = sampling_params
self.dialog = [
{"role": "system", "content": "You are a helpful AI assistant for responding to user instructions"},
]
def query(self, prompt: str):
self.dialog.append({"role": "user", "content": prompt})
full_prompt = self.tokenizer.apply_chat_template(self.dialog, tokenize=False)
full_prompt += "<|start_header_id|>assistant<|end_header_id|>\n\n"
output = self.model.generate(full_prompt, self.sampling_params)
response = output[0].outputs[0].text
self.dialog.append({"role": "assistant", "content": response})
return response
if __name__ == "__main__":
# Initialize the model
model = LLM(model="ckpts/instruct-lr5e-06-rr0.1-epochs2-bs128-wd0.01-warmup0.05-qualitylr5e06rr0.1epochs2bs16wd0.01warmup0.05MetaLlama38B",
tokenizer="meta-llama/Meta-Llama-3.1-8B-Instruct",
tensor_parallel_size=8, device="cuda")
tokenizer = model.get_tokenizer()
# Set up sampling parameters
sampling_params = SamplingParams(temperature=0.1, max_tokens=2000, stop=[tokenizer.eos_token])
def chatbot_fn(prompt):
chatbot = ChatBot(model, tokenizer, sampling_params)
return chatbot.query(prompt)
demo = gr.Interface(fn=chatbot_fn, inputs="textbox", outputs="textbox")
demo.launch(share=True)