-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
96 lines (65 loc) · 3.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import time
import sys
from igmm import igmm_full_cov_sampler
from plot_result import plot_result
import pandas as pd
# the maximum positive integer for use in setting the ARS seed
maxsize = sys.maxsize
def parser():
"""Parses command line arguments"""
parser = argparse.ArgumentParser(prog='main.py', description='Applies an N-Dimensional infinite Gaussian mixture model to data')
# arguments for multivariate gaussian distribution covariance matrix type, full or diagonal
parser.add_argument('-c', '--cov_type', type=str, default="full", help='covariance matrix type, input full or diagonal')
# arguments for reading in a data file
parser.add_argument('-i', '--inputfile', type=str, default=None, help='the input file name')
# arguments for sampling number
parser.add_argument('-n', '--Nsamples', type=int, default=2000, help='the number of gibbs samples to produce')
# general analysis parameters
parser.add_argument('-I', '--Nint', type=int, default=100, help='the number of samples used in approximating the tricky integral')
parser.add_argument('-a', '--anneal', action='count', default=0, help='perform simulated annealing')
# catch any input errors
args = parser.parse_args()
if args.cov_type and args.cov_type not in ["full", "diagonal"]:
print('{} : ERROR - the covariance matrix must be full or diagonal.'.format(time.asctime()))
exit(1)
if not args.inputfile:
print('{} : ERROR - must specify an input file.'.format(time.asctime()))
exit(1)
if args.Nint < 1:
print('{} : ERROR - the integration samples must be > 0. Exiting.'.format(time.asctime()))
exit(1)
if args.Nsamples < 1:
print('{} : ERROR - the number of igmm samples must be > 0. Exiting.'.format(time.asctime()))
exit(1)
return parser.parse_args()
def readdata(inputfile):
"""
reads in data from an input text file
inputfile - the name of the input file
"""
dataset_df = pd.read_csv(inputfile, header=None)
dataset = dataset_df.values
return dataset
# the main part of the code
def main():
"""Takes command line args and computes samples from the joint posterior
using Gibbs sampling"""
# record the start time
t = time.time()
# get the command line args
args = parser()
# read in data if required
if args.inputfile:
Y = readdata(args.inputfile)
# call igmm Gibbs sampler
Samp, Y = igmm_full_cov_sampler(Y, cov_type=args.cov_type, Nsamples=args.Nsamples, Nint=args.Nint,
anneal=args.anneal)
# print computation time
print("{}: time to complete main analysis = {} sec".format(time.asctime(), time.time() - t))
# plot chains, histograms, average maps, and overlayed ellipses
print('{}: making output plots'.format(time.asctime()) )
plot_result(Samp, Y, "graphs/" + args.cov_type + '_ellipses.png', M=4, Ngrid=100)
print('{}: success'.format(time.asctime()) )
if __name__ == "__main__":
exit(main())