-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
226 lines (189 loc) · 7.16 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import sys
import numpy as np
from scipy.stats import gamma, wishart, norm, invgamma
from scipy.stats import multivariate_normal as mv_norm
from numpy.linalg import inv, det, slogdet
from scipy import special
from ars import ARS
# the maximum positive integer for use in setting the ARS seed
maxsize = sys.maxsize
def integral_approx_full_cov(y, lam, r, beta, w, G=1, size=100):
"""
estimates the integral, eq 17 (Rasmussen 2000)
the covariance matrix of the model is full cov
"""
temp = np.zeros(len(y))
inv_betaw = inv(beta * w)
inv_r = inv(r)
i = 0
bad = 0
while i < size:
mu = mv_norm.rvs(mean=lam, cov=inv_r, size=1)
s = draw_wishart(float(beta), inv_betaw)
try:
temp += mv_norm.pdf(y, mean=np.squeeze(mu), cov=G*inv(s))
except:
bad += 1
pass
i += 1
return temp/float(size)
def integral_approx_diagonal_cov(y, lam, r, beta, w, G=1, size=100):
"""
estimates the integral, eq 17 (Rasmussen 2000)
the covariance matrix of the model is diagonal cov
"""
N, D = y.shape
temp = np.zeros(len(y))
inv_r = inv(r)
i = 0
bad = 0
while i < size:
mu = mv_norm.rvs(mean=lam, cov=inv_r, size=1)
s = np.diag([np.squeeze(draw_gamma(beta[d]/2 , 2/(beta[d]*w[d]))) for d in range(D)])
try:
temp_para = mv_norm.pdf(y, mean=np.squeeze(mu), cov=G*inv(s))
temp += temp_para
except:
bad += 1
pass
i += 1
return temp/float(size)
def log_p_alpha(alpha, k, N):
"""
the log of eq15 (Rasmussen 2000)
"""
return (k - 1.5)*np.log(alpha) - 0.5/alpha + special.gammaln(alpha) - special.gammaln(N + alpha)
def log_p_alpha_prime(alpha, k, N):
"""
the derivative (wrt alpha) of the log of eq 15 (Rasmussen 2000)
"""
return (k - 1.5)/alpha + 0.5/(alpha*alpha) + special.psi(alpha) - special.psi(alpha + N)
def log_p_beta_full_cov(beta,k=1,s=1,w=1,D=1,logdet_w=1,cumculative_sum_equation=1):
"""
The log of the second part of eq 9 (Rasmussen 2000)
the covariance matrix of the model is full cov
"""
return -1.5*np.log(beta - D + 1.0) \
- 0.5*D/(beta - D + 1.0) \
+ 0.5*beta*k*D*np.log(0.5*beta) \
+ 0.5*beta*k*logdet_w \
+ 0.5*beta*cumculative_sum_equation \
- k*special.multigammaln(0.5*beta, D)
def log_p_beta_prime_full_cov(beta,k=1,s=1,w=1,D=1,logdet_w=1,cumculative_sum_equation=1):
"""
The derivative (wrt beta) of the log of eq 9 (Rasmussen 2000)
the covariance matrix of the model is full cov
"""
psi = 0.0
for j in range(1,D+1):
psi += special.psi(0.5*beta + 0.5*(1.0 - j))
return -1.5/(beta - D + 1.0) \
+ 0.5*D/(beta - D + 1.0)**2 \
+ 0.5*k*D*(1.0 + np.log(0.5*beta)) \
+ 0.5*k*logdet_w \
+ 0.5*cumculative_sum_equation \
- 0.5*k*psi
def log_p_beta_diagonal_cov(beta,k=1,w=1,D=1,cumculative_sum_equation=1):
"""
The log of the second part of eq 9 (Rasmussen 2000)
the covariance matrix of the model is diagonal cov
"""
return -k*special.gammaln(beta/2) \
- 0.5/beta \
+ 0.5*(beta*k-3)*np.log(beta/2) \
+ 0.5*beta*cumculative_sum_equation
def log_p_beta_prime_diagonal_cov(beta,k=1,w=1,D=1,cumculative_sum_equation=1):
"""
The derivative (wrt beta) of the log of eq 9 (Rasmussen 2000)
the covariance matrix of the model is diagonal cov
"""
return -k*special.psi(0.5*beta) \
+ 0.5/beta**2 \
+ 0.5*k*np.log(0.5*beta) \
+ (k*beta -3)/beta \
+ 0.5*cumculative_sum_equation
# def draw_gamma_ras(a, theta, size=1):
# """
# returns Gamma distributed samples according to the Rasmussen (2000) definition
# """
# return gamma.rvs(0.5 * a, loc=0, scale=2.0 * theta / a, size=size)
def draw_gamma(a, theta, size=1):
"""
returns Gamma distributed samples
"""
return gamma.rvs(a, loc=0, scale=theta, size=size)
def draw_invgamma(a, theta, size=1):
"""
returns inverse Gamma distributed samples
"""
return invgamma.rvs(a, loc=0, scale=theta, size=size)
def draw_wishart(df, scale, size=1):
"""
returns Wishart distributed samples
"""
return wishart.rvs(df=df, scale=scale, size=size)
def draw_MVNormal(mean=0, cov=1, size=1):
"""
returns multivariate normally distributed samples
"""
return mv_norm.rvs(mean=mean, cov=cov, size=size)
def draw_alpha(k, N, size=1):
"""
draw alpha from posterior (depends on k, N), eq 15 (Rasmussen 2000), using ARS
Make it robust with an expanding range in case of failure
"""
ars = ARS(log_p_alpha, log_p_alpha_prime, xi=[0.1, 5], lb=0, ub=np.inf, k=k, N=N)
return ars.draw(size)
def draw_beta_full_cov(k, s, w, size=1):
"""
draw beta from posterior (depends on k, s, w), eq 9 (Rasmussen 2000), using ARS
the covariance matrix of the model is full cov
Make it robust with an expanding range in case of failure
"""
D = w.shape[0]
# compute Determinant of w, det(w)
logdet_w = slogdet(w)[1]
# compute cumculative sum j from i to k, [ log(det(sj))- trace(w * sj)]
cumculative_sum_equation = 0
for sj in s:
sj = np.reshape(sj, (D, D))
cumculative_sum_equation += slogdet(sj)[1]
cumculative_sum_equation -= np.trace(np.dot(w, sj))
lb = D
ars = ARS(log_p_beta_full_cov, log_p_beta_prime_full_cov, xi=[lb + 1, lb + 1000], lb=lb, ub=float("inf"), \
k=k, s=s, w=w, D=D, logdet_w=logdet_w, cumculative_sum_equation=cumculative_sum_equation)
return ars.draw(size)
def draw_beta_diagonal_cov(k, s, w, d, D, size=1):
"""
draw beta from posterior (depends on k, s, w), eq 9 (Rasmussen 2000), using ARS
the covariance matrix of the model is diagonal cov
Make it robust with an expanding range in case of failure
"""
# compute cumculative sum j from i to k, [ log(sj) + log(w) - w*sj ]
# 0.5*beta*cumculative_sum_equation
cumculative_sum_equation = 0
for sj in s:
sj = np.reshape(sj, (D, D))
cumculative_sum_equation += np.log(sj[d, d])
cumculative_sum_equation += np.log(w[d])
cumculative_sum_equation -= w[d]*sj[d, d]
lb = D
ars = ARS(log_p_beta_diagonal_cov, log_p_beta_prime_diagonal_cov, xi=[lb + 15], lb=lb, ub=float("inf"), \
k=k, w=w, D=D, cumculative_sum_equation=cumculative_sum_equation)
return ars.draw(size)
def draw_indicator(pvec):
"""
draw stochastic indicator values from multinominal distributions, check wiki
"""
res = np.zeros(pvec.shape[1])
# loop over each data point
for j in range(pvec.shape[1]):
c = np.cumsum(pvec[ : ,j]) # the cumulative un-scaled probabilities
R = np.random.uniform(0, c[-1], 1) # a random number
r = (c - R)>0 # truth table (less or greater than R)
y = (i for i, v in enumerate(r) if v) # find first instant of truth
try:
res[j] = y.__next__() # record component index
except: # if no solution (must have been all zeros)
res[j] = np.random.randint(0, pvec.shape[0]) # pick uniformly
return res