-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmain.py
168 lines (152 loc) · 4.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import json
import sys
import os
import pandas as pd
from matplotlib import pyplot as plt
os.environ["TOKENIZERS_PARALLELISM"] = "true"
import torch.distributed as dist
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from torch_geometric import seed_everything
from tqdm import tqdm
import math
import pytorch_lightning as pl
pl.seed_everything(1234)
current_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(current_dir)
grandparent_dir = os.path.dirname(parent_dir)
sys.path.insert(0, parent_dir)
sys.path.insert(0, grandparent_dir)
from models import MAGVITv2, get_mask_chedule
from training.prompting_utils import UniversalPrompting, create_attention_mask_predict_next
from transformers import AutoTokenizer, AutoConfig
from models.modeling_utils import ConfigMixin, ModelMixin, register_to_config
from models.sampling import cosine_schedule, mask_by_random_topk
from models.phi import PhiForCausalLM
from selector import ImageSelector
torch.set_grad_enabled(False)
from parm import run_parm
from orm import run_orm
from baseline import run_showo
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompts_file",
type=str,
default='prompts.txt',
help="Text file containing prompts, one per line"
)
parser.add_argument(
"--metadata_file",
type=str,
default='metadata.jsonl',
help="Metadata for geneval"
)
parser.add_argument(
"--model",
type=str,
default="show-o",
help="Huggingface model name"
)
parser.add_argument(
"--outdir",
type=str,
help="dir to write results to",
default="geneval/outputs"
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="how many samples can be produced simultaneously",
)
parser.add_argument(
"--config",
type=str,
default="showo_prm.yaml",
help="Path to the configuration file",
)
parser.add_argument(
"--validation_prompts_file",
type=str,
default=None,
help="Path to the validation prompts file",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=1.75,
help="Guidance scale for generation",
)
parser.add_argument(
"--generation_timesteps",
type=int,
default=18,
help="Number of timesteps for generation",
)
parser.add_argument(
"--eval_num",
type=int,
default=4,
help="for geneval benchmark"
)
parser.add_argument(
"--search_num",
type=int,
default=20,
help="search number"
)
parser.add_argument(
"--reward_model",
type=str,
default="",
help="Mode of reward model",
)
parser.add_argument(
"--dpo_model",
type=str,
default="",
)
opt = parser.parse_args()
return opt
if __name__ == "__main__":
opt = parse_args()
outputname_list = [i for i in [opt.model, opt.reward_model, opt.dpo_model] if i]
opt.outdir = "results/" + "_".join(outputname_list)
print(f"Result will be saved under: {opt.outdir}")
if opt.dpo_model == 'dpo':
opt.dpo_model_path = 'ckpts/dpo'
print("Running Initial DPO...")
elif opt.dpo_model == 'dpo_iter':
opt.dpo_model_path = 'ckpts/dpo_iter'
print("Running Iterative DPO...")
elif opt.dpo_model == 'dpo_iter_parm_gudie':
opt.dpo_model_path = 'ckpts/dpo_iter_parm_gudie'
print("Running Iterative DPO with PARM Guidance...")
elif opt.dpo_model == '':
opt.dpo_model_path = 'showlab/show-o'
print("Running without DPO...")
else:
raise ValueError(f'DPO model: {opt.dpo_model} is not supported yet...')
if opt.reward_model == 'orm_zs':
opt.reward_model_path = 'lmms-lab/llava-onevision-qwen2-7b-ov'
print("Running Zero-shot ORM...")
run_orm(opt)
elif opt.reward_model == 'orm_ft':
opt.reward_model_path = 'ckpts/orm_ft'
print("Running Fine-tuned ORM...")
run_orm(opt)
elif opt.reward_model == 'parm':
opt.reward_model_path = 'ckpts/parm'
print("Running PARM...")
run_parm(opt)
elif opt.reward_model == '':
opt.reward_model_path = ''
print("Running without Reward Model...")
run_showo(opt)
else:
raise ValueError(f'Reward model: {opt.reward_model} is not supported yet...')