forked from devpouya/FastSpectralClustering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.c
177 lines (152 loc) · 5.12 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <math.h>
#include <string.h>
#include <time.h>
#include <lapacke.h>
#include <inttypes.h>
#include <sys/time.h>
#include "tsc_x86.h"
#include "instrumentation.h"
#include "norms.h"
#include "construct_graph.h"
#include "kmeans.h"
#include "util.h"
#include "eigs.h"
/*
* The file that the program reads from is stored in the following format, assuming that
* we are using n d-dimensional datapoints:
* <d>\n
* <Dim. 0 of point 0> <Dim. 1 of point 0> <Dim. 2 of point 0> ... <Dim. d of point 0>\n
* <Dim. 0 of point 1> <Dim. 1 of point 1> <Dim. 2 of point 1> ... <Dim. d of point 1>\n
* ........................
* <Dim. 0 of point n-1> <Dim. 1 of point n-1> <Dim. 2 of point n-1> ... <Dim. d of point n-1>\n
* arguments: dataset_path, number of clusters (k)
*/
int cmpfunc (const void * a, const void * b) {
return ( *(int*)a - *(int*)b );
}
#ifdef DUMPEV
__attribute__((used))
static void read_ev_from_file(const char *data_path, int n, int k, double *ret_ev) {
char path[128];
int len = strlen(data_path);
int q;
for (q = 0; q < len-4; q++) {
path[q] = data_path[q];
}
strcpy(path + q, "_ev.txt");
// path[strlen(data_path) - 4] = '\0';
printf("path is %s\n", path);
FILE *fp = fopen(path, "r");
for (int i = 0; i < n; i++) {
for (int j = 0; j < k; j++) {
fscanf(fp, "%lf ", &ret_ev[i*k + j]);
printf("%lf\n", ret_ev[i*k + j]);
}
}
}
__attribute__((used))
static void dump_ev_to_file(const char *data_path, int n, int k, double *ev) {
char path[128];
int len = strlen(data_path);
int q;
for (q = 0; q < len-4; q++) {
path[q] = data_path[q];
}
strcpy(path + q, "_ev.txt");
printf("dumping to file: %s\n", path);
FILE *fp = fopen(path, "w");
for (int i = 0; i < n; i++) {
for (int j = 0; j < k; j++) {
fprintf(fp, "%.17f ", ev[i*k + j]);
}
fprintf(fp, "\n");
}
}
#endif
#define NUM_RUNS 9
int main(int argc, char *argv[]) {
if (argc != 4) {
printf("usage: %s points_file num_clusters output_file\n", argv[0]);
return 1;
}
// printf("loading dataset: %s\n", argv[1]);
// printf("number of clusters: %d\n", atoi(argv[2]));
// printf("output path: %s\n", argv[3]);
struct file f = alloc_load_points_from_file(argv[1]);
int dim = f.dimension;
int lines = f.lines;
double *points = f.points;
int k = atoi(argv[2]);
int n = lines;
//printf("Constructing unnormalized Laplacian...\n");
double *laplacian = calloc(lines*lines, sizeof(double));
uint64_t start1 = start_tsc();
//double start1 = wtime();
if (dim >= 8){
oneshot_unnormalized_laplacian_vec_blocked(points,lines,dim,laplacian);
}else{
oneshot_unnormalized_laplacian_lowdim_vec_blocked(points,lines,dim,laplacian);
}
//compute the eigendecomposition and take the first k eigenvectors.
uint64_t end1 = stop_tsc(start1);
PROFILER_LIST();
//double end1 = wtime() - start1;
//printf("Performing eigenvalue decomposition...\n");
double *eigenvalues = malloc(k * sizeof(double));
double *eigenvectors = malloc(n * k * sizeof(double));
smallest_eigenvalues(laplacian, n, k, eigenvalues, eigenvectors);
#ifdef DUMPEV
// read_ev_from_file(argv[1], n, k, eigenvectors);
dump_ev_to_file(argv[1], n, k, eigenvectors);
#endif
uint64_t start2 = start_tsc();
//double start2 = wtime();
// init datastructure
struct cluster clusters[k];
for (int i = 0; i < k; i++) {
clusters[i].mean = malloc(k * sizeof(double)); // k is the "dimension" here
clusters[i].size = 0;
clusters[i].indices = malloc(lines * sizeof(int)); // at most
}
if(k>=8){
hamerly_kmeans(eigenvectors, lines, k, 100, 0.0001, clusters);
}else{
hamerly_kmeans_lowdim(eigenvectors, lines, k, 100, 0.0001, clusters);
}
// double timing = wtime()-timing_start ;
uint64_t runtime = stop_tsc(start2) + end1;
//double end2 = wtime() - start2;
//print_cluster_indices(clusters, k);
//write result in output file
write_clustering_result(argv[3], clusters, k);
PROFILER_LIST();
free(eigenvectors);
free(eigenvalues);
free(laplacian);
free(f.points);
//double timing = end1 + end2;
// LEAVE THESE PRINTS (for the performance checking script)
//printf("%f\n", timing);
printf("%" PRIu64 "\n", runtime);
printf("%" PRIu64 "\n", NUM_FLOPS);
#ifdef VALIDATION
char *my_argv; // = {"./base_clustering" , argv[1] , argv[2] , "./base_output"};
my_argv = concat("./base_clustering ", argv[1]);
my_argv = concat(my_argv, " ");
my_argv = concat(my_argv, argv[2]);
my_argv = concat(my_argv, " ./base_output");
system(my_argv);
int line, col;
FILE* fpt1 = fopen("./base_output", "r");
FILE* fpt2 = fopen(argv[3], "r");
if (compareFile(fpt1, fpt2, &line, &col) != 0){
printf("ERROR! optimized version gives different result as base clustering\n");
}else{
printf("Result Correct!\n");
}
#endif
return 0;
}