forked from Rongjiehuang/Multi-Singer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
125 lines (108 loc) · 4.58 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Decode with trained Multi-Singer."""
import argparse
import logging
import os
import time
import numpy as np
import soundfile as sf
import torch
import yaml
from tqdm import tqdm
from datasets import MelDataset
from utils import load_model
from utils import read_hdf5
import os
def main():
"""Run decoding process."""
parser = argparse.ArgumentParser(
description="Decode dumped features with trained Parallel WaveGAN Generator "
"(See detail in parallel_wavegan/bin/decode.py).")
parser.add_argument("--inputdir",'-i', type=str,required=True,
help="directory including feature files. "
"you need to specify either feats-scp or inputdir.")
parser.add_argument("--outdir",'-o',type=str, required=True,
help="directory to save generated speech.")
parser.add_argument("--checkpoint",'-c',type=str, required=True,
help="checkpoint file to be loaded.")
parser.add_argument("--config", '-g',default=None, type=str,
help="yaml format configuration file. if not explicitly provided, "
"it will be searched in the checkpoint directory. (default=None)")
parser.add_argument("--verbose", type=int, default=1,
help="logging level. higher is more logging. (default=1)")
parser.add_argument("--rank", default=0, type=int,
help="rank for distributed training. no need to explictly specify.")
parser.add_argument("--force_cpu", type=bool, default=False)
args = parser.parse_args()
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s")
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s")
else:
logging.basicConfig(
level=logging.WARN, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s")
logging.warning("Skip DEBUG/INFO messages")
# check directory existence
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
# load config
if args.config is None:
dirname = os.path.dirname(args.checkpoint)
args.config = os.path.join(dirname, "config.yml")
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.Loader)
config.update(vars(args))
# check arguments
if args.inputdir is None:
raise ValueError("Please specify either --inputdir or --feats-scp.")
# get dataset
if config["format"] == "hdf5":
mel_query = "*.h5"
mel_load_fn = lambda x: read_hdf5(x, "mel") # NOQA
elif config["format"] == "npy":
mel_query = "*-feats.npy"
mel_load_fn = np.load
else:
raise ValueError("Support only hdf5 or npy format.")
dataset = MelDataset(
args.inputdir,
mel_query=mel_query,
mel_load_fn=mel_load_fn,
return_utt_id=True,
)
logging.info(f"The number of features to be decoded = {len(dataset)}.")
# setup model
if torch.cuda.is_available():
device = torch.device("cuda")
torch.cuda.set_device(args.rank)
else:
device = torch.device("cpu")
model = load_model(args.checkpoint, config)
logging.info(f"Loaded model parameters from {args.checkpoint}.")
model.remove_weight_norm()
model = model.eval().to(device)
# start generation
total_rtf = 0.0
with torch.no_grad(), tqdm(dataset, desc="[decode]") as pbar:
for idx, (utt_id, c) in enumerate(pbar, 1): # utt_id: mel id c: mel feats
# generate
if not (os.path.exists(os.path.join(config["outdir"], f"{utt_id}_gen.wav"))):
c = torch.tensor(c, dtype=torch.float).to(device)
start = time.time()
y = model.inference(c).view(-1)
rtf = (time.time() - start) / (len(y) / config["sampling_rate"])
pbar.set_postfix({"RTF": rtf})
total_rtf += rtf
# save as PCM 16 bit wav file
sf.write(os.path.join(config["outdir"], f"{utt_id}_gen.wav"),
y.cpu().numpy(), config["sampling_rate"], "PCM_16")
del c,y
torch.cuda.empty_cache()
# report average RTF
logging.info(f"Finished generation of {idx} utterances (RTF = {total_rtf / idx:.03f}).")
if __name__ == "__main__":
main()