-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathSnakefile
executable file
·453 lines (409 loc) · 17.3 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import gzip
import os
import glob
import re
import shutil
import sys
import tarfile
import urllib.request
import pandas as pd
import yaml
# default executable for snakmake
shell.executable("bash")
#functions
def open_output(filename):
return open(OUTPUTDIR + '/' + filename, 'w+')
def getThreads(max):
if hasattr(workflow, 'cores'):
realThreads = max if max <= workflow.cores else workflow.cores
elif hasattr(workflow, 'nodes'):
realThreads = max if max <= workflow.nodes else workflow.nodes
else:
realThreads = max
return realThreads
def prepare_input_files(inputs, outputs):
"""
Prepare file names from input into snakemake pipeline.
"""
if len(inputs) != len(outputs):
raise OSError("//Inputs and outputs are not of the same length: %s <> %s" % (', '.join(inputs), ', '.join(outputs)))
for infilename, outfilename in zip(inputs, outputs):
_, fname1 = os.path.split(infilename)
_process_file(fname1, infilename, outfilename)
def _process_file(fname, inp, outfilename):
"""
Write the input to the output. Handle raw, zip, or bzip input files.
"""
print(inp, '=>', outfilename)
# ungunzip
if os.path.splitext(fname)[-1] in ['.gz', '.gzip']:
with open(outfilename, 'wb') as whandle, gzip.open(inp, 'rb') as rhandle:
shutil.copyfileobj(rhandle, whandle)
# unbzip2
elif os.path.splitext(fname)[-1] in ['.bz2', '.bzip2']:
shell("bzip2 -dc {i} > {o}".format(i=inp, o=outfilename))
# copy
else:
shutil.copy(inp, outfilename)
# default configuration file
configfile:
srcdir("config/config.default.yaml")
# some parameters
SRCDIR = srcdir("workflow/scripts")
BINDIR = srcdir("workflow/bin")
ENVDIR = srcdir("workflow/envs")
CONDA_DIR = config['conda_source']
if SRCDIR not in sys.path:
sys.path.append(SRCDIR)
import remove_unused_checkm_hmm_profiles as prepCheckM
# get parameters from the config file
# output
if os.path.isabs(os.path.expandvars(config['outputdir'])):
OUTPUTDIR = os.path.expandvars(config['outputdir'])
else:
OUTPUTDIR = os.path.join(os.getcwd() , os.path.expandvars(config['outputdir']))
if not os.path.exists(OUTPUTDIR):
os.makedirs(OUTPUTDIR)
# input
if os.path.isabs(os.path.expandvars(config['raws']['assembly'])):
CONTIGS = os.path.expandvars(config['raws']['assembly'])
else:
CONTIGS = os.path.join(os.getcwd(), os.path.expandvars(config['raws']['assembly']))
# Added depth file par to use instead of alignment
if config['raws']['contig_depth']:
if os.path.isabs(os.path.expandvars(config['raws']['contig_depth'])):
CONTIG_DEPTH = os.path.expandvars(config['raws']['contig_depth'])
else:
CONTIG_DEPTH = os.path.join(os.getcwd(),os.path.expandvars(config['raws']['contig_depth']))
else:
CONTIG_DEPTH = None
if all([os.path.isabs(path) for path in glob.glob(config['raws']['metagenomics_alignment'])]):
MGaln = [os.path.expandvars(path) for path in glob.glob(config['raws']['metagenomics_alignment'])]
else:
MGaln = [os.path.join(os.getcwd(), os.path.expandvars(path)) for path in glob.glob(config['raws']['metagenomics_alignment'])]
# Get filenames of all bam files without extension, even if the name contains '.'
mappings_ids = ['.'.join(bam.split('/')[-1].split('.')[:-1]) for bam in MGaln]
# print(mappings_ids)
# ????:
# Note that if a rule has multiple output files, Snakemake requires them to all have exactly the same wildcards.
# Otherwise, it could happen that two jobs running the same rule in parallel want to write to the same file.
# and
# The best solution is to have a dictionary that translates a sample id to the inconsistently named files and
# use a function (see Functions as Input Files) to provide an input file ...
sample_id_map_dict = {map_id: 'sample_%06.d' % (index + 1) for index, map_id in enumerate(mappings_ids)}
# Use existing env for Prokka if specified
if config['prokka_env'] and config['prokka_env'].split('.')[-1] in ['yaml', 'yml']:
if os.path.isabs(config['prokka_env']):
PROKKA_ENV = os.path.expandvars(config['prokka_env'])
else:
PROKKA_ENV = os.path.join(os.getcwd(), config['prokka_env'])
print(PROKKA_ENV)
elif config['prokka_env']:
PROKKA_ENV = config['prokka_env']
print('named', PROKKA_ENV)
else:
PROKKA_ENV = None
# Use existing env for Mantis if specified
if config['mantis_env'] and config['mantis_env'].split('.')[-1] in ['yaml', 'yml']:
if os.path.isabs(config['mantis_env']):
MANTIS_ENV = os.path.expandvars(config['mantis_env'])
else:
MANTIS_ENV = os.path.join(os.getcwd(), config['mantis_env'])
print(MANTIS_ENV)
elif config['mantis_env']:
MANTIS_ENV = config['mantis_env']
print('named', MANTIS_ENV)
else:
MANTIS_ENV = None
# hardware parameters
MEMCORE = str(config['mem']['normal_mem_per_core_gb']) + "G"
if config['mem']['big_mem_avail'] > 0:
BIGMEMCORE = str(config['mem']['big_mem_per_core_gb']) + "G"
BIGMEMS = config['mem']['big_mem_avail']
else:
BIGMEMCORE = False
#clean up sample name
SAMPLE = config['sample']
if SAMPLE == "":
SAMPLE = "_".join(OUTPUTDIR.split("/")[-2:])
SAMPLE = re.sub("_+","_",re.sub("[;|.-]","_",SAMPLE))
#set up DBs, if necessary
if not config['db_path']:
DBPATH = srcdir('database')
else:
DBPATH = os.path.expandvars(config['db_path'])
if not os.path.isabs(DBPATH):
DBPATH = os.path.join(os.getcwd(), DBPATH)
if not os.path.exists(os.path.join(DBPATH, "taxon_marker_sets_lineage_sorted.tsv")):
print("Setting up marker database")
if not os.path.exists(DBPATH):
os.makedirs(DBPATH)
if not os.path.exists(os.path.join(DBPATH, "checkm_data_2015_01_16.tar.gz")):
urllib.request.urlretrieve("https://data.ace.uq.edu.au/public/CheckM_databases/checkm_data_2015_01_16.tar.gz", os.path.join(DBPATH, "checkm_data_2015_01_16.tar.gz"))
checkm_tar = tarfile.open(os.path.join( DBPATH, "checkm_data_2015_01_16.tar.gz"))
checkm_tar.extract("./taxon_marker_sets.tsv",DBPATH)
checkm_tar.extract("./pfam/tigrfam2pfam.tsv",DBPATH)
checkm_tar.extract("./hmms/checkm.hmm",DBPATH)
markers_df = pd.read_csv(os.path.join(DBPATH, 'taxon_marker_sets.tsv'), sep='\t', skipinitialspace=True, header=None)
markers_df = markers_df.sort_values(markers_df.columns[2])
markers_df.to_csv(os.path.join(DBPATH, "taxon_marker_sets_lineage_sorted.tsv"), header=None, index=None, sep="\t")
prepCheckM.remove_unused_checkm_hmm_profiles(os.path.join(DBPATH, "hmms/checkm.hmm"), os.path.join(DBPATH, 'taxon_marker_sets.tsv'), os.path.join(DBPATH, "pfam/tigrfam2pfam.tsv"), os.path.join(DBPATH, "hmms"))
if os.path.exists(os.path.join(DBPATH, "checkm_data_2015_01_16.tar.gz")):
os.remove(os.path.join(DBPATH, "checkm_data_2015_01_16.tar.gz"))
if os.path.exists(os.path.join(DBPATH, "hmms/checkm.hmm")):
os.remove(os.path.join(DBPATH, "hmms/checkm.hmm"))
if os.path.exists(os.path.join(DBPATH, "taxon_marker_sets.tsv")) and os.path.exists(os.path.join(DBPATH, "taxon_marker_sets_lineage_sorted.tsv")):
os.remove(os.path.join(DBPATH, "taxon_marker_sets.tsv"))
print("Initializing conda environments.")
# temporary directory will be stored inside the OUTPUTDIR directory
# unless an absolute path is set
TMPDIR = config['tmp_dir']
if not os.path.isabs(TMPDIR):
TMPDIR = os.path.join(OUTPUTDIR, TMPDIR)
if not os.path.exists(TMPDIR):
os.makedirs(TMPDIR)
# dump config
yaml.add_representer(OrderedDict, lambda dumper, data: dumper.represent_mapping('tag:yaml.org,2002:map', data.items()))
yaml.add_representer(tuple, lambda dumper, data: dumper.represent_sequence('tag:yaml.org,2002:seq', data))
yaml.dump(config, open_output('binny.config.yaml'), allow_unicode=True, default_flow_style=False)
workdir:
OUTPUTDIR
onsuccess:
shell("mkdir -p job.errs.outs &>> logs/cleanup.log; ( mv binny*stdout job.errs.outs || touch job.errs.outs ) &>> logs/cleanup.log")
# Snakemake workflow
localrules: prepare_input_data, ALL
rule ALL:
input:
os.path.join(OUTPUTDIR, 'binny.done')
rule prepare_input_data:
input:
CONTIGS,
CONTIG_DEPTH if CONTIG_DEPTH else MGaln
output:
os.path.join(OUTPUTDIR, "intermediary/assembly.fa"),
os.path.join(OUTPUTDIR, "intermediary/assembly.contig_depth.txt") if CONTIG_DEPTH
else [os.path.join(OUTPUTDIR, "intermediary/reads_{0}_sorted.bam".format(sample_id_map_dict[mappings_id]))
for mappings_id in mappings_ids]
threads: 1
# resources:
# runtime = "4:00:00",
# mem = MEMCORE
message:
"Preparing input."
run:
prepare_input_files(input, output)
rule format_assembly:
input:
os.path.join(OUTPUTDIR, "intermediary/assembly.fa")
output:
os.path.join(OUTPUTDIR, "intermediary/assembly.formatted.fa")
params:
min_length=int(config["min_cont_length_cutoff_marker"]) - 1
threads:
getThreads(1)
resources:
runtime = "2:00:00",
mem = MEMCORE
message:
"Preparing assembly."
conda:
os.path.join(ENVDIR, "fasta_processing.yaml")
shell:
"""
seqkit seq {input} -o {output} -w 80 -m 499 \
&& \
rm -f {input}
"""
# contig depth
if not CONTIG_DEPTH:
rule call_contig_depth:
input:
assembly=os.path.join(OUTPUTDIR, "intermediary/assembly.formatted.fa"),
mapping=lambda wildcards: os.path.join(OUTPUTDIR,
"intermediary/reads_{0}_sorted.bam".format(sample_id_map_dict[wildcards.sample]))
output:
os.path.join(OUTPUTDIR, "intermediary/assembly_contig_depth_{sample}.txt")
resources:
runtime = "4:00:00",
mem = BIGMEMCORE if BIGMEMCORE else MEMCORE
threads:
1
conda:
os.path.join(ENVDIR, "mapping.yaml")
log:
os.path.join(OUTPUTDIR, "logs/analysis_call_contig_depth_{sample}.log")
message:
os.path.join(OUTPUTDIR, "call_contig_depth: Getting data on assembly coverage with mg reads.")
shell:
"""
echo "Running BEDTools for average depth in each position" >> {log}
export TMPDIR={TMPDIR}
TMP_DEPTH=$(mktemp --tmpdir={TMPDIR} "depth_file_XXXXXXXXXXXXXXXX.txt")
genomeCoverageBed -ibam {input.mapping} | grep -v "genome" > $TMP_DEPTH
echo "Depth calculation done" >> {log}
## This method of depth calculation was adapted and modified from the CONCOCT code
echo "Getting average contig depth." >> {log}
perl {SRCDIR}/calcAvgCoverage.pl $TMP_DEPTH {input.assembly} > {output} && \
echo "Done. Removing the temporary file" >> {log}
rm $TMP_DEPTH
"""
rule merge_contig_depths:
input:
[os.path.join(OUTPUTDIR, f"intermediary/assembly_contig_depth_{mappings_id}.txt")
for mappings_id in mappings_ids]
output:
os.path.join(OUTPUTDIR, "intermediary/assembly.contig_depth.txt")
params:
int_dir=os.path.join(OUTPUTDIR, "intermediary")
resources:
runtime = "1:00:00",
mem = MEMCORE
threads:
getThreads(1)
conda:
os.path.join(ENVDIR, "mapping.yaml")
log:
os.path.join(OUTPUTDIR, "logs/merge_contig_depth.log")
message:
"Merging depth files."
shell:
"""
first_file=true
for file in {input}; do
if [[ $first_file == 'true' ]]; then
# echo "First file."
cp $file {output}
first_file=false
else
# echo "File $COUNTER"
export TMPDIR={TMPDIR}
TMP_DEPTH=$(mktemp --tmpdir={TMPDIR} "tmp_XXXXXXXXXXX.tsv")
paste {output} <( cut -f 2 $file) > $TMP_DEPTH \
&& mv $TMP_DEPTH {output}
fi
done
rm {params.int_dir}/assembly_contig_depth_*.txt
"""
#gene calling
rule annotate:
input:
assembly=os.path.join(OUTPUTDIR, 'intermediary/assembly.formatted.fa')
output:
gff=os.path.join(OUTPUTDIR, "intermediary/prokka.gff"),
gff_filt=os.path.join(OUTPUTDIR, "intermediary/annotation.filt.gff"),
faa=os.path.join(OUTPUTDIR, "intermediary/prokka.faa"),
params:
int_dir=os.path.join(OUTPUTDIR, "intermediary")
threads:
getThreads(24)
resources:
runtime = "48:00:00",
mem = MEMCORE
log:
os.path.join(OUTPUTDIR, "logs/analysis_annotate.log")
benchmark:
os.path.join(OUTPUTDIR, "logs/analysis_annotate_benchmark.txt")
conda:
PROKKA_ENV if PROKKA_ENV else os.path.join(ENVDIR, "prokka.yaml")
message:
"annotate: Running prokkaP."
shell:
"""
export PERL5LIB=$CONDA_PREFIX/lib/site_perl/5.26.2
export LC_ALL=en_US.utf-8
export TMPDIR={TMPDIR}
{BINDIR}/prokkaP --dbdir $CONDA_PREFIX/db --force --outdir {params.int_dir} --tmpdir {TMPDIR} --prefix prokka \
--noanno --cpus {threads} --metagenome {input.assembly} >> {log} 2>&1
# Prokka gives a gff file with a long header and with all the contigs at the bottom. The command below keeps
# only the gff table.
LN=`grep -Hn "^>" {output.gff} | head -n1 | cut -f2 -d ":" || if [[ $? -eq 141 ]]; then true; else exit $?; fi`
LN1=1
LN=$(($LN-$LN1))
head -n $LN {output.gff} | grep -v "^#" | sort | uniq | grep -v "^==" > {output.gff_filt}
"""
# Find markers on contigs
rule mantis_checkm_marker_sets:
input:
proteins=os.path.join(OUTPUTDIR, "intermediary/prokka.faa")
output:
os.path.join(OUTPUTDIR, "intermediary/mantis_out/output_annotation.tsv"),
os.path.join(OUTPUTDIR, "intermediary/mantis_out/integrated_annotation.tsv"),
os.path.join(OUTPUTDIR, "intermediary/mantis_out/consensus_annotation.tsv"),
out_dir=directory(os.path.join(OUTPUTDIR, "intermediary/mantis_out"))
params:
binny_cfg=srcdir("config/binny_mantis.cfg")
resources:
runtime = "48:00:00",
mem = MEMCORE
conda:
MANTIS_ENV if MANTIS_ENV else os.path.join(ENVDIR, "mantis.yaml")
threads:
getThreads(80)
log:
os.path.join(OUTPUTDIR, "logs/analysis_checkm_markers.log")
benchmark:
os.path.join(OUTPUTDIR, "logs/analysis_checkm_markers_benchmark.txt")
message:
"MANTIS: Running MANTIS with CheckM marker sets."
shell:
"""
if [ -d {output.out_dir} ]; then rm {output.out_dir}/* || true ; fi >> {log} 2>&1
mantis run -i {input.proteins} \
-da heuristic \
-mc {params.binny_cfg} \
-o {output.out_dir} \
-c {threads} \
--no_taxonomy \
-et 1e-3 >> {log} 2>&1
"""
rule binny:
input:
mgdepth=os.path.join(OUTPUTDIR, 'intermediary/assembly.contig_depth.txt'),
raw_gff=os.path.join(OUTPUTDIR, 'intermediary/annotation.filt.gff'),
assembly=os.path.join(OUTPUTDIR, "intermediary/assembly.formatted.fa"),
hmm_markers=os.path.join(OUTPUTDIR, "intermediary/mantis_out/consensus_annotation.tsv")
output:
os.path.join(OUTPUTDIR, 'binny.done')
params:
binny_out=OUTPUTDIR,
sample=SAMPLE,
py_functions=SRCDIR + "/binny_functions.py",
t2p=DBPATH + "/pfam/tigrfam2pfam.tsv",
marker_sets=DBPATH + "/taxon_marker_sets_lineage_sorted.tsv",
gff=os.path.join(OUTPUTDIR, "intermediary/annotation_CDS_RNA_hmms_checkm.gff"),
min_completeness=config["bin_quality"]["min_completeness"],
start_completeness=config["bin_quality"]["start_completeness"],
purity=config["bin_quality"]["purity"],
kmers=config["kmers"],
mask_disruptive_sequences=config["mask_disruptive_sequences"],
extract_scmags=config["extract_scmags"],
coassembly_mode=config["coassembly_mode"],
min_cutoff=config["min_cont_length_cutoff"],
max_cutoff=config["max_cont_length_cutoff"],
min_cutoff_marker=config["min_cont_length_cutoff_marker"],
max_cutoff_marker=config["max_cont_length_cutoff_marker"],
nx_val=config["NX_value"],
max_n_contigs=config["max_n_contigs"],
max_marker_lineage_depth_lvl=config["max_marker_lineage_depth_lvl"],
distance_metric=config["distance_metric"],
max_embedding_tries=config["embedding"]["max_iterations"],
include_depth_initial=config["clustering"]["include_depth_initial"],
include_depth_main=config["clustering"]["include_depth_main"],
hdbscan_min_samples_range=config["clustering"]["hdbscan_min_samples_range"],
hdbscan_epsilon_range=config["clustering"]["hdbscan_epsilon_range"],
write_contig_data=config["write_contig_data"]
resources:
runtime = "12:00:00",
mem = BIGMEMCORE if BIGMEMCORE else MEMCORE
threads:
getThreads(BIGMEMS) if BIGMEMCORE else getThreads(80)
conda:
os.path.join(ENVDIR, "binny_linux.yaml")
log:
os.path.join(OUTPUTDIR, "logs/binning_binny.log")
benchmark:
os.path.join(OUTPUTDIR, "logs/binning_binny_benchmark.txt")
message:
"binny: Running Python Binny."
script:
os.path.join(SRCDIR, "binny_main.py")