-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_nist_mols.py
33 lines (29 loc) · 1.01 KB
/
plot_nist_mols.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import pandas as pd
import re
from pathlib import Path
from rdkit.Chem import MolFromSmiles
from rdkit.Chem.Draw import MolsToGridImage
from scipy.stats import norm
HERE = Path(__file__).parent
OUT_SVG = HERE / "nist-underpred.svg"
nist_pred_df = pd.read_csv(HERE / "uq_nist_pred.csv", index_col=0)
nist_pred_df["resid"] = nist_pred_df["log CMC"] - nist_pred_df["pred"]
# Normalise with respect to standard deviations
nist_pred_df["norm resid"] = nist_pred_df["resid"] / nist_pred_df["stddev"]
nist_pred_df["cdf"] = norm.cdf(nist_pred_df["norm resid"])
nist_pred_df["Above 95% CI"] = nist_pred_df["cdf"] > 0.95
nist_pred_df["Above 95% CI"].sum() / len(nist_pred_df["Above 95% CI"])
outliers = nist_pred_df[nist_pred_df["Above 95% CI"]]
outlie_smiles = outliers.SMILES
outlie_mols = list(map(MolFromSmiles, outlie_smiles))
svg: str = MolsToGridImage(
outlie_mols,
3,
(600, 300),
useSVG=True,
minFontSize=30,
drawMolsSameScale=False,
padding=0.2,
)
svg = re.sub(r"<rect.*\n", "", svg)
OUT_SVG.write_text(svg)