-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhack_gyan.py
230 lines (185 loc) · 6.19 KB
/
hack_gyan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import numpy as np
from keras.models import Sequential
from keras.layers import Dense,LSTM,Dropout,Flatten
from keras.callbacks import History
from keras.layers.wrappers import TimeDistributed
from keras.optimizers import Adam,SGD
from keras.layers.normalization import BatchNormalization
import pandas as pd
import os.path
##seed for random number reproduction
np.random.seed(2017)
episodes=10
if not os.path.exists(os.getcwd()+'/output/'):
os.makedirs(os.getcwd()+'/output/')
def shuffle3D(arr):
for a in arr:
np.random.shuffle(a)
##time step addtition to feature
def dimX(x,ts):
x=np.asarray(x)
newX=[]
for i, c in enumerate(x):
newX.append([])
for j in range(ts):
newX[i].append(c)
return np.array(newX)
##time step addtition to target
def dimY(Y,ts):
temp = np.zeros((len(Y), ts, len(chars)), dtype=np.bool)
for i, c in enumerate(Y):
for j, s in enumerate(c):
#print i, j, s
temp[i, j, char_idx[s]] = 1
return np.array(temp)
#prediction of sequence with argmax
def prediction(preds):
y_pred=[]
for i,c in enumerate(preds):
y_pred.append([])
for j in c:
y_pred[i].append(np.argmax(j))
return np.array(y_pred)
##sequence to text conversion
def seq_txt(y_pred):
newY=[]
for i,c in enumerate(y_pred):
newY.append([])
for j in c:
newY[i].append(idx_char[j])
return np.array(newY)
##joined smiles output
def smiles_output(s):
smiles=np.array([])
for i in s:
j=''.join(str(k) for k in i)
smiles=np.append(smiles,j)
return smiles
def Gen():
#Generator model
G = Sequential()
G.add(TimeDistributed(Dense(x_dash.shape[2]), input_shape=(x_dash.shape[1],x_dash.shape[2])))
G.add(LSTM(216, return_sequences=True))
G.add(Dropout(0.3))
G.add(LSTM(216, return_sequences=True))
G.add(Dropout(0.3))
G.add(LSTM(216, return_sequences=True))
#G.add(BatchNormalization(momentum=0.9))
G.add(TimeDistributed(Dense(y_dash.shape[2], activation='softmax')))
G.compile(loss='categorical_crossentropy', optimizer=Adam(lr=2e-4))
return G
def Dis():
#Discriminator model
D = Sequential()
D.add(TimeDistributed(Dense(y_dash.shape[2]), input_shape=(y_dash.shape[1],y_dash.shape[2])))
D.add(LSTM(216, return_sequences=True))
D.add(Dropout(0.3))
D.add(LSTM(60, return_sequences=True))
D.add(Flatten())
D.add(Dense(1, activation='sigmoid'))
D.compile(loss='binary_crossentropy', optimizer=SGD(lr=0.001))
return D
def Gan():
GAN=Sequential()
GAN.add(G)
D.trainable=False
GAN.add(D)
GAN.compile(loss='binary_crossentropy', optimizer=Adam(lr=2e-4))
return GAN
def trainDis(data=None,mc=None):
if data is None and mc is None:
# Train on fake data
fake_data= G.predict(x_dash)
targets = np.zeros(x_dash.shape[0]).astype(int)
Dloss=D.fit(fake_data, targets,nb_epoch=1)
elif data is None and mc=="mc":
#preventing mode collapse
#artificial noice training
fake_ydata=np.copy(y_dash)
shuffle3D(fake_ydata)
targets = np.zeros(x_dash.shape[0]).astype(int)
Dloss=D.fit(fake_ydata, targets,nb_epoch=1)
else:
# Train on real data
targets = np.ones(x_dash.shape[0]).astype(int)
Dloss=D.fit(data,targets,nb_epoch=1)
#print Dloss.history.keys()
return Dloss.history['loss'][0]
def trainGAN():
#train Generator
target = np.ones(x_dash.shape[0]).astype(int)
gan_loss = GAN.fit(x_dash, target,nb_epoch=1)
return gan_loss.history['loss'][0]
##read csv file
data = pd.read_csv('fin1.csv')
data=data.reindex(np.random.permutation(data.index))
#data=data.head(30)
Y=data.SMILES
Y.head()
X=data.ix[:,1:7]
X=X.values
X=X.astype('int')
type(X)
##padding smiles to same length by adding "|" at the end of smiles
maxY=Y.str.len().max()
y=Y.str.ljust(maxY, fillchar='|')
ts=y.str.len().max()
##CharToIndex and IndexToChar functions
chars = sorted(list( set("".join(y.values.flatten()))))
print('total chars:', len(chars))
char_idx= dict((c, i) for i, c in enumerate(chars))
idx_char = dict((i, c) for i, c in enumerate(chars))
y_dash=dimY(y,ts)
x_dash=dimX(X,ts)
#initializing models
G=Gen()
D=Dis()
GAN=Gan()
'''
if os.path.exists(os.getcwd()+"/output/Gen.h5")==True and os.path.exists(os.getcwd()+"/output/Dis.h5")==True and os.path.exists(os.getcwd()+"/output/Gan.h5")==True:
#loading weights if exits
G.load_weights(os.getcwd()+"/output/Gen.h5")
D.load_weights(os.getcwd()+"/output/Dis.h5")
GAN.load_weights(os.getcwd()+"/output/Gan.h5")
'''
print("GAN input "+str(GAN.input_shape))
print("GAN output "+str(GAN.output_shape))
print("Gen input "+str(G.input_shape))
print("Gen output "+str(G.output_shape))
print("Dis input "+str(D.input_shape))
print("Dis output "+str(D.output_shape))
#print D.summary()
#print G.summary()
#enable training in discrimator
D.trainable=True
#pre training
for i in range(20):
shuffleData = np.random.permutation(y_dash)
trainDis()
dloss=trainDis(shuffleData)
print("Pre Training Discrimator "+str(dloss)+"\n")
for episode in range(episodes):
print("Epoch "+str(episode)+"/"+str(episodes))
trainDis()
shuffleData = np.random.permutation(y_dash)
disloss=trainDis(y_dash)
disloss=trainDis(mc="mc")
ganloss=trainGAN()
print("D loss="+str(disloss)+" GAN loss="+str(ganloss))
#if episode%(episodes/100)==0:
#G.save(os.getcwd()+'/output/Gen.h5')
#D.save(os.getcwd()+'/output/Dis.h5')
#GAN.save(os.getcwd()+'/output/Gan.h5')
#for saving files in floydhub output directory
#G.save("/output/Gen_mc.h5")
#D.save("/output/Dis_mc.h5")
#GAN.save("/output/Gan_mc.h5")
if episode%(episodes/600)==0:
print("Predicting Molecule")
x_pred=[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1]]
x_pred=dimX(x_pred,ts)
preds=G.predict(x_pred)
y_pred=prediction(preds)
y_pred=seq_txt(y_pred)
s=smiles_output(y_pred)
print(s)