forked from carpedm20/lstm-char-cnn-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTDNN.py
43 lines (34 loc) · 1.35 KB
/
TDNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import tensorflow as tf
from .ops import conv2d
from base import Model
class TDNN(Model):
"""Time-delayed Nueral Network (cf. http://arxiv.org/abs/1508.06615v4)
"""
def __init__(self, input_, embed_dim=650,
feature_maps=[50, 100, 150, 200, 200, 200, 200],
kernels=[1,2,3,4,5,6,7], checkpoint_dir="checkpoint",
forward_only=False):
"""Initialize the parameters for TDNN
Args:
embed_dim: the dimensionality of the inputs
feature_maps: list of feature maps (for each kernel width)
kernels: list of # of kernels (width)
"""
self.embed_dim = embed_dim
self.feature_maps = feature_maps
self.kernels = kernels
# [batch_size x seq_length x embed_dim x 1]
input_ = tf.expand_dims(input_, -1)
layers = []
for idx, kernel_dim in enumerate(kernels):
reduced_length = input_.get_shape()[1] - kernel_dim + 1
# [batch_size x seq_length x embed_dim x feature_map_dim]
conv = conv2d(input_, feature_maps[idx], kernel_dim , self.embed_dim,
name="kernel%d" % idx)
# [batch_size x 1 x 1 x feature_map_dim]
pool = tf.nn.max_pool(tf.tanh(conv), [1, reduced_length, 1, 1], [1, 1, 1, 1], 'VALID')
layers.append(tf.squeeze(pool))
if len(kernels) > 1:
self.output = tf.concat(1, layers)
else:
self.output = layers[0]