-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoice2img.py
executable file
·227 lines (197 loc) · 6.18 KB
/
voice2img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python
# Copyright (c) 2022 Savoir-faire Linux Inc.
# This code is licensed under MIT license
import argparse
from pytorch_lightning import seed_everything
import asyncio
import concurrent.futures
import aiohttp
from aiohttp import web
import uuid
from image_generator import ImageGenerator
from speech_recognizer import SpeechRecognizer
from audio_input import record_audio_blocks
speech_executor = concurrent.futures.ThreadPoolExecutor(1)
imggen_executor = concurrent.futures.ThreadPoolExecutor(1)
BUF_SIZE = 8*SpeechRecognizer.SAMPLE_RATE
SLIDE = BUF_SIZE//4
queue = asyncio.Queue()
image_generator = ImageGenerator()
speech_recognizer = SpeechRecognizer()
connected_clients: set[web.WebSocketResponse] = set()
cached_result = None
def load_model(opt):
image_generator.init(opt)
def load_speech(opt):
speech_recognizer.init()
def generate_images(prompt):
return image_generator.generate_images(prompt)
def recognize_speech(a):
return speech_recognizer.process_audio(a)
async def index(request):
return web.FileResponse('./index.html')
async def send_to_client(socket: web.WebSocketResponse, input, images=()):
try:
await socket.send_json(input)
for img in images:
await socket.send_bytes(img)
except Exception as e:
print(f'Error sending to client: {e}')
async def audio_to_text():
print('Starting audio recording...')
async for audio_frame in record_audio_blocks(block_size=BUF_SIZE, slide=SLIDE, samplerate=SpeechRecognizer.SAMPLE_RATE):
lang, result = await asyncio.get_running_loop().run_in_executor(speech_executor, recognize_speech, audio_frame)
if result:
data = {'id': str(uuid.uuid4()), 'lang': lang, 'text': result}
await asyncio.gather(
queue.put(data),
*[send_to_client(ws, data) for ws in connected_clients]
)
async def text_to_image():
global cached_result
while True:
task = await queue.get()
result, images = await asyncio.get_running_loop().run_in_executor(imggen_executor, generate_images, task)
result['n'] = len(images) if images else 0
cached_result = result, images
await asyncio.gather(*[send_to_client(ws, result, images) for ws in connected_clients])
queue.task_done()
async def websocket_handler(request: web.Request):
ws = web.WebSocketResponse()
await ws.prepare(request)
print(f'WebSocket connection with {request.remote} ({" ".join(request.headers["User-Agent"].split()[-2:])}) opened')
# Send initial cached data
if cached_result:
await send_to_client(ws, *cached_result)
connected_clients.add(ws)
async for msg in ws:
if msg.type == aiohttp.WSMsgType.TEXT:
if msg.data == 'close':
await ws.close()
elif msg.type == aiohttp.WSMsgType.ERROR:
print(f'WebSocket connection with {request.remote} closed with exception {ws.exception()}')
connected_clients.remove(ws)
print(f'WebSocket connection with {request.remote} closed')
return ws
async def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--fixed_code",
action='store_true',
help="if enabled, uses the same starting code across samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--n_samples",
type=int,
default=1,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/v1-inference.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
default="models/ldm/stable-diffusion-v1/model.ckpt",
help="path to checkpoint of model",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
opt = parser.parse_args()
seed_everything(opt.seed)
app = web.Application()
app.add_routes([web.get('/', index)])
app.add_routes([web.get('/ws', websocket_handler)])
loop = asyncio.get_running_loop()
# Load models in their executor
await loop.run_in_executor(imggen_executor, load_model, opt)
await loop.run_in_executor(speech_executor, load_speech, opt)
# Start processing
await asyncio.gather(
audio_to_text(),
text_to_image(),
web._run_app(app)
)
if __name__ == "__main__":
try:
asyncio.run(main())
except KeyboardInterrupt:
pass