-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathtrain_emotion_classifier.py
156 lines (139 loc) · 5.75 KB
/
train_emotion_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""
Description: Train emotion classification model
"""
from keras.callbacks import CSVLogger, ModelCheckpoint, EarlyStopping
from keras.callbacks import ReduceLROnPlateau
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
from keras.layers import Activation, Convolution2D, Dropout, Conv2D
from keras.layers import AveragePooling2D, BatchNormalization
from keras.layers import GlobalAveragePooling2D
from keras.models import Sequential
from keras.layers import Flatten
from keras.models import Model
from keras.layers import Input
from keras.layers import MaxPooling2D
from keras.layers import SeparableConv2D
from keras import layers
from keras.regularizers import l2
import pandas as pd
import cv2
import numpy as np
dataset_path = 'fer2013/fer2013.csv'
image_size=(48,48)
# parameters
batch_size = 32
num_epochs = 110
input_shape = (48, 48, 1)
validation_split = .2
verbose = 1
num_classes = 7
patience = 50
base_path = 'models/'
l2_regularization=0.01
def load_fer2013():
data = pd.read_csv(dataset_path)
pixels = data['pixels'].tolist()
width, height = 48, 48
faces = []
for pixel_sequence in pixels:
face = [int(pixel) for pixel in pixel_sequence.split(' ')]
face = np.asarray(face).reshape(width, height)
face = cv2.resize(face.astype('uint8'),image_size)
faces.append(face.astype('float32'))
faces = np.asarray(faces)
faces = np.expand_dims(faces, -1)
emotions = pd.get_dummies(data['emotion']).as_matrix()
return faces, emotions
def preprocess_input(x, v2=True):
x = x.astype('float32')
x = x / 255.0
if v2:
x = x - 0.5
x = x * 2.0
return x
# data generator
data_generator = ImageDataGenerator(
featurewise_center=False,
featurewise_std_normalization=False,
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=.1,
horizontal_flip=True)
# model parameters/compilation
# model = mini_XCEPTION(input_shape, num_classes)
regularization = l2(l2_regularization)
# base
img_input = Input(input_shape)
x = Conv2D(8, (3, 3), strides=(1, 1), kernel_regularizer=regularization, use_bias=False)(img_input)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(8, (3, 3), strides=(1, 1), kernel_regularizer=regularization, use_bias=False)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
# module 1
residual = Conv2D(16, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
residual = BatchNormalization()(residual)
x = SeparableConv2D(16, (3, 3), padding='same', kernel_regularizer=regularization, use_bias=False)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = SeparableConv2D(16, (3, 3), padding='same', kernel_regularizer=regularization, use_bias=False)(x)
x = BatchNormalization()(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
x = layers.add([x, residual])
# module 2
residual = Conv2D(32, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
residual = BatchNormalization()(residual)
x = SeparableConv2D(32, (3, 3), padding='same', kernel_regularizer=regularization, use_bias=False)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = SeparableConv2D(32, (3, 3), padding='same', kernel_regularizer=regularization, use_bias=False)(x)
x = BatchNormalization()(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
x = layers.add([x, residual])
# module 3
residual = Conv2D(64, (1, 1), strides=(2, 2),padding='same', use_bias=False)(x)
residual = BatchNormalization()(residual)
x = SeparableConv2D(64, (3, 3), padding='same',kernel_regularizer=regularization,use_bias=False)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = SeparableConv2D(64, (3, 3), padding='same',kernel_regularizer=regularization,use_bias=False)(x)
x = BatchNormalization()(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
x = layers.add([x, residual])
# module 4
residual = Conv2D(128, (1, 1), strides=(2, 2),padding='same', use_bias=False)(x)
residual = BatchNormalization()(residual)
x = SeparableConv2D(128, (3, 3), padding='same',kernel_regularizer=regularization,use_bias=False)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = SeparableConv2D(128, (3, 3), padding='same',kernel_regularizer=regularization,use_bias=False)(x)
x = BatchNormalization()(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
x = layers.add([x, residual])
x = Conv2D(num_classes, (3, 3), padding='same')(x)
x = GlobalAveragePooling2D()(x)
output = Activation('softmax',name='predictions')(x)
model = Model(img_input, output)
model.compile(optimizer='adam', loss='categorical_crossentropy',metrics=['accuracy'])
model.summary()
# callbacks
log_file_path = base_path + '_emotion_training.log'
csv_logger = CSVLogger(log_file_path, append=False)
early_stop = EarlyStopping('val_loss', patience=patience)
reduce_lr = ReduceLROnPlateau('val_loss', factor=0.1, patience=int(patience/4), verbose=1)
trained_models_path = base_path + '_mini_XCEPTION'
model_names = trained_models_path + '.{epoch:02d}-{val_acc:.2f}.hdf5'
model_checkpoint = ModelCheckpoint(model_names, 'val_loss', verbose=1,save_best_only=True)
callbacks = [model_checkpoint, csv_logger, early_stop, reduce_lr]
# loading dataset
faces, emotions = load_fer2013()
faces = preprocess_input(faces)
num_samples, num_classes = emotions.shape
xtrain, xtest,ytrain,ytest = train_test_split(faces, emotions,test_size=0.2,shuffle=True)
model.fit_generator(data_generator.flow(xtrain, ytrain,
batch_size),
steps_per_epoch=len(xtrain) / batch_size,
epochs=num_epochs, verbose=1, callbacks=callbacks,
validation_data=(xtest,ytest))