-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecommendations.py
128 lines (95 loc) · 3.76 KB
/
recommendations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
'The Night Listener': 4.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}
from math import sqrt
def sim_distance(prefs,person1,person2):
si={}
for item in prefs[person1]:
if item in prefs[person2]:
si[item]=1
if len(si)==0: return 0
sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2)
for item in prefs[person1] if item in prefs[person2]])
return 1/(1+sum_of_squares)
def sim_pearson(prefs,p1,p2):
si={}
for item in prefs[p1]:
if item in prefs[p2]:si[item]=1
n=len(si)
if n==0:return 0
sum1=sum([prefs[p1][it] for it in si])
sum2=sum([prefs[p2][it] for it in si])
sum1Sq=sum([pow(prefs[p1][it],2) for it in si])
sum2Sq=sum([pow(prefs[p2][it],2) for it in si])
pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])
num=pSum-(sum1*sum2/n)
den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
if den==0:return 0
r=num/den
return r
def topmatches(prefs,person,n=5,similarity=sim_pearson):
scores=[(similarity(prefs,person,other),other)
for other in prefs if other!=person]
scores.sort()
scores.reverse()
return scores[0:n]
def getRecommendations(prefs,person,similarity=sim_pearson):
totals={}
simSums={}
for other in prefs:
if other==person: continue
sim= similarity(prefs,person,other)
if sim<=0:continue
for item in prefs[other]:
if item not in prefs[person] or prefs[person][item]==0:
totals.setdefault(item,0)
totals[item]+=prefs[other][item]*sim
simSums.setdefault(items,0)
simSums[item]+=sim
rankings=[(total/simSums[item],item) for item ,total in totals.items()]
rankings.sort()
rankings.reverse()
return rankings
def transformPrefs(prefs):
result={}
for person in prefs[person]:
result.setdefault(item,{})
result[item][person]=prefs[person][item]
return result
def calculateSimilarItems(perfs,n=10):
result={}
itemPrefs=transformPrefs(prefs)
c=0
for item in itemPrefs:
c+=1
if c%100==0: print "%d / %d" %(c,len(itemPrefs))
scores=topMatches(itemPrefs,item,n=n,similarity=sim_distance)
result[item]=scores
return result
def getRecommendedItems(prefs,itemMatch,user):
userRatings=prefs[user]
scores={}
totalSim={}
for (item,rating) in userRatings.items():
for (similarity,item2) in itemMatch[item]:
if item2 in userRatings: continue
scores.setdefault(item2,0)
scores[item2]+=similarity
rankings=[(score/totalSim[item],item) for item,score in scores.items()]
rankings.sort()
rankings.reverse()
return rankings