-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbse_full_diag.F
761 lines (643 loc) · 36.6 KB
/
bse_full_diag.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Routines for the full diagonalization of GW + Bethe-Salpeter for computing
!> electronic excitations
!> \par History
!> 10.2023 created [Maximilian Graml]
! **************************************************************************************************
MODULE bse_full_diag
USE bse_print, ONLY: print_excitation_energies,&
print_exciton_descriptors,&
print_optical_properties,&
print_output_header,&
print_transition_amplitudes
USE bse_properties, ONLY: calculate_NTOs,&
exciton_descr_type,&
get_exciton_descriptors,&
get_oscillator_strengths
USE bse_util, ONLY: comp_eigvec_coeff_BSE,&
fm_general_add_bse,&
get_multipoles_mo
USE cp_blacs_env, ONLY: cp_blacs_env_create,&
cp_blacs_env_release,&
cp_blacs_env_type
USE cp_fm_basic_linalg, ONLY: cp_fm_scale_and_add
USE cp_fm_diag, ONLY: choose_eigv_solver,&
cp_fm_power
USE cp_fm_struct, ONLY: cp_fm_struct_create,&
cp_fm_struct_release,&
cp_fm_struct_type
USE cp_fm_types, ONLY: cp_fm_create,&
cp_fm_get_info,&
cp_fm_release,&
cp_fm_set_all,&
cp_fm_to_fm,&
cp_fm_type
USE input_constants, ONLY: bse_screening_alpha,&
bse_screening_rpa,&
bse_singlet,&
bse_triplet
USE kinds, ONLY: dp
USE message_passing, ONLY: mp_para_env_type
USE mp2_types, ONLY: mp2_type
USE parallel_gemm_api, ONLY: parallel_gemm
USE qs_environment_types, ONLY: qs_environment_type
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'bse_full_diag'
PUBLIC :: create_A, diagonalize_A, create_B, create_hermitian_form_of_ABBA, &
diagonalize_C
CONTAINS
! **************************************************************************************************
!> \brief Matrix A constructed from GW energies and 3c-B-matrices (cf. subroutine mult_B_with_W)
!> A_ia,jb = (ε_a-ε_i) δ_ij δ_ab + α * v_ia,jb - W_ij,ab
!> ε_a, ε_i are GW singleparticle energies from Eigenval_reduced
!> α is a spin-dependent factor
!> v_ia,jb = \sum_P B^P_ia B^P_jb (unscreened Coulomb interaction)
!> W_ij,ab = \sum_P \bar{B}^P_ij B^P_ab (screened Coulomb interaction)
!> \param fm_mat_S_ia_bse ...
!> \param fm_mat_S_bar_ij_bse ...
!> \param fm_mat_S_ab_bse ...
!> \param fm_A ...
!> \param Eigenval ...
!> \param unit_nr ...
!> \param homo ...
!> \param virtual ...
!> \param dimen_RI ...
!> \param mp2_env ...
!> \param para_env ...
! **************************************************************************************************
SUBROUTINE create_A(fm_mat_S_ia_bse, fm_mat_S_bar_ij_bse, fm_mat_S_ab_bse, &
fm_A, Eigenval, unit_nr, &
homo, virtual, dimen_RI, mp2_env, &
para_env)
TYPE(cp_fm_type), INTENT(IN) :: fm_mat_S_ia_bse, fm_mat_S_bar_ij_bse, &
fm_mat_S_ab_bse
TYPE(cp_fm_type), INTENT(INOUT) :: fm_A
REAL(KIND=dp), DIMENSION(:) :: Eigenval
INTEGER, INTENT(IN) :: unit_nr, homo, virtual, dimen_RI
TYPE(mp2_type), INTENT(INOUT) :: mp2_env
TYPE(mp_para_env_type), INTENT(INOUT) :: para_env
CHARACTER(LEN=*), PARAMETER :: routineN = 'create_A'
INTEGER :: a_virt_row, handle, i_occ_row, &
i_row_global, ii, j_col_global, jj, &
ncol_local_A, nrow_local_A
INTEGER, DIMENSION(4) :: reordering
INTEGER, DIMENSION(:), POINTER :: col_indices_A, row_indices_A
REAL(KIND=dp) :: alpha, alpha_screening, eigen_diff
TYPE(cp_blacs_env_type), POINTER :: blacs_env
TYPE(cp_fm_struct_type), POINTER :: fm_struct_A, fm_struct_W
TYPE(cp_fm_type) :: fm_W
CALL timeset(routineN, handle)
IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
WRITE (unit_nr, '(T2,A10,T13,A10)') 'BSE|DEBUG|', 'Creating A'
END IF
!Determines factor of exchange term, depending on requested spin configuration (cf. input_constants.F)
SELECT CASE (mp2_env%bse%bse_spin_config)
CASE (bse_singlet)
alpha = 2.0_dp
CASE (bse_triplet)
alpha = 0.0_dp
END SELECT
IF (mp2_env%bse%screening_method == bse_screening_alpha) THEN
alpha_screening = mp2_env%bse%screening_factor
ELSE
alpha_screening = 1.0_dp
END IF
! create the blacs env for ij matrices (NOT fm_mat_S_ia_bse%matrix_struct related parallel_gemms!)
NULLIFY (blacs_env)
CALL cp_blacs_env_create(blacs_env=blacs_env, para_env=para_env)
! We have to use the same blacs_env for A as for the matrices fm_mat_S_ia_bse from RPA
! Logic: A_ia,jb = (ε_a-ε_i) δ_ij δ_ab + α * v_ia,jb - W_ij,ab
! We create v_ia,jb and W_ij,ab, then we communicate entries from local W_ij,ab
! to the full matrix v_ia,jb. By adding these and the energy diffenences: v_ia,jb -> A_ia,jb
! We use the A matrix already from the start instead of v
CALL cp_fm_struct_create(fm_struct_A, context=fm_mat_S_ia_bse%matrix_struct%context, nrow_global=homo*virtual, &
ncol_global=homo*virtual, para_env=fm_mat_S_ia_bse%matrix_struct%para_env)
CALL cp_fm_create(fm_A, fm_struct_A, name="fm_A_iajb")
CALL cp_fm_set_all(fm_A, 0.0_dp)
CALL cp_fm_struct_create(fm_struct_W, context=fm_mat_S_ab_bse%matrix_struct%context, nrow_global=homo**2, &
ncol_global=virtual**2, para_env=fm_mat_S_ab_bse%matrix_struct%para_env)
CALL cp_fm_create(fm_W, fm_struct_W, name="fm_W_ijab")
CALL cp_fm_set_all(fm_W, 0.0_dp)
! Create A matrix from GW Energies, v_ia,jb and W_ij,ab (different blacs_env!)
! v_ia,jb, which is directly initialized in A (with a factor of alpha)
! v_ia,jb = \sum_P B^P_ia B^P_jb
CALL parallel_gemm(transa="T", transb="N", m=homo*virtual, n=homo*virtual, k=dimen_RI, alpha=alpha, &
matrix_a=fm_mat_S_ia_bse, matrix_b=fm_mat_S_ia_bse, beta=0.0_dp, &
matrix_c=fm_A)
IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
WRITE (unit_nr, '(T2,A10,T13,A16)') 'BSE|DEBUG|', 'Allocated A_iajb'
END IF
! If infinite screening is applied, fm_W is simply 0 - Otherwise it needs to be computed from 3c integrals
IF (mp2_env%bse%screening_method /= bse_screening_rpa) THEN
!W_ij,ab = \sum_P \bar{B}^P_ij B^P_ab
CALL parallel_gemm(transa="T", transb="N", m=homo**2, n=virtual**2, k=dimen_RI, alpha=alpha_screening, &
matrix_a=fm_mat_S_bar_ij_bse, matrix_b=fm_mat_S_ab_bse, beta=0.0_dp, &
matrix_c=fm_W)
END IF
IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
WRITE (unit_nr, '(T2,A10,T13,A16)') 'BSE|DEBUG|', 'Allocated W_ijab'
END IF
! We start by moving data from local parts of W_ij,ab to the full matrix A_ia,jb using buffers
CALL cp_fm_get_info(matrix=fm_A, &
nrow_local=nrow_local_A, &
ncol_local=ncol_local_A, &
row_indices=row_indices_A, &
col_indices=col_indices_A)
! Writing -1.0_dp * W_ij,ab to A_ia,jb, i.e. beta = -1.0_dp,
! W_ij,ab: nrow_secidx_in = homo, ncol_secidx_in = virtual
! A_ia,jb: nrow_secidx_out = virtual, ncol_secidx_out = virtual
! If infinite screening is applied, fm_W is simply 0 - Otherwise it needs to be computed from 3c integrals
IF (mp2_env%bse%screening_method /= bse_screening_rpa) THEN
reordering = (/1, 3, 2, 4/)
CALL fm_general_add_bse(fm_A, fm_W, -1.0_dp, homo, virtual, &
virtual, virtual, unit_nr, reordering, mp2_env)
END IF
!full matrix W is not needed anymore, release it to save memory
CALL cp_fm_release(fm_W)
!Now add the energy differences (ε_a-ε_i) on the diagonal (i.e. δ_ij δ_ab) of A_ia,jb
DO ii = 1, nrow_local_A
i_row_global = row_indices_A(ii)
DO jj = 1, ncol_local_A
j_col_global = col_indices_A(jj)
IF (i_row_global == j_col_global) THEN
i_occ_row = (i_row_global - 1)/virtual + 1
a_virt_row = MOD(i_row_global - 1, virtual) + 1
eigen_diff = Eigenval(a_virt_row + homo) - Eigenval(i_occ_row)
fm_A%local_data(ii, jj) = fm_A%local_data(ii, jj) + eigen_diff
END IF
END DO
END DO
CALL cp_fm_struct_release(fm_struct_A)
CALL cp_fm_struct_release(fm_struct_W)
CALL cp_blacs_env_release(blacs_env)
CALL timestop(handle)
END SUBROUTINE create_A
! **************************************************************************************************
!> \brief Matrix B constructed from 3c-B-matrices (cf. subroutine mult_B_with_W)
!> B_ia,jb = α * v_ia,jb - W_ib,aj
!> α is a spin-dependent factor
!> v_ia,jb = \sum_P B^P_ia B^P_jb (unscreened Coulomb interaction)
!> W_ib,aj = \sum_P \bar{B}^P_ib B^P_aj (screened Coulomb interaction)
!> \param fm_mat_S_ia_bse ...
!> \param fm_mat_S_bar_ia_bse ...
!> \param fm_B ...
!> \param homo ...
!> \param virtual ...
!> \param dimen_RI ...
!> \param unit_nr ...
!> \param mp2_env ...
! **************************************************************************************************
SUBROUTINE create_B(fm_mat_S_ia_bse, fm_mat_S_bar_ia_bse, fm_B, &
homo, virtual, dimen_RI, unit_nr, mp2_env)
TYPE(cp_fm_type), INTENT(IN) :: fm_mat_S_ia_bse, fm_mat_S_bar_ia_bse
TYPE(cp_fm_type), INTENT(INOUT) :: fm_B
INTEGER, INTENT(IN) :: homo, virtual, dimen_RI, unit_nr
TYPE(mp2_type), INTENT(INOUT) :: mp2_env
CHARACTER(LEN=*), PARAMETER :: routineN = 'create_B'
INTEGER :: handle
INTEGER, DIMENSION(4) :: reordering
REAL(KIND=dp) :: alpha, alpha_screening
TYPE(cp_fm_struct_type), POINTER :: fm_struct_v
TYPE(cp_fm_type) :: fm_W
CALL timeset(routineN, handle)
IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
WRITE (unit_nr, '(T2,A10,T13,A10)') 'BSE|DEBUG|', 'Creating B'
END IF
! Determines factor of exchange term, depending on requested spin configuration (cf. input_constants.F)
SELECT CASE (mp2_env%bse%bse_spin_config)
CASE (bse_singlet)
alpha = 2.0_dp
CASE (bse_triplet)
alpha = 0.0_dp
END SELECT
IF (mp2_env%bse%screening_method == bse_screening_alpha) THEN
alpha_screening = mp2_env%bse%screening_factor
ELSE
alpha_screening = 1.0_dp
END IF
CALL cp_fm_struct_create(fm_struct_v, context=fm_mat_S_ia_bse%matrix_struct%context, nrow_global=homo*virtual, &
ncol_global=homo*virtual, para_env=fm_mat_S_ia_bse%matrix_struct%para_env)
CALL cp_fm_create(fm_B, fm_struct_v, name="fm_B_iajb")
CALL cp_fm_set_all(fm_B, 0.0_dp)
CALL cp_fm_create(fm_W, fm_struct_v, name="fm_W_ibaj")
CALL cp_fm_set_all(fm_W, 0.0_dp)
IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
WRITE (unit_nr, '(T2,A10,T13,A16)') 'BSE|DEBUG|', 'Allocated B_iajb'
END IF
! v_ia,jb = \sum_P B^P_ia B^P_jb
CALL parallel_gemm(transa="T", transb="N", m=homo*virtual, n=homo*virtual, k=dimen_RI, alpha=alpha, &
matrix_a=fm_mat_S_ia_bse, matrix_b=fm_mat_S_ia_bse, beta=0.0_dp, &
matrix_c=fm_B)
! If infinite screening is applied, fm_W is simply 0 - Otherwise it needs to be computed from 3c integrals
IF (mp2_env%bse%screening_method /= bse_screening_rpa) THEN
! W_ib,aj = \sum_P \bar{B}^P_ib B^P_aj
CALL parallel_gemm(transa="T", transb="N", m=homo*virtual, n=homo*virtual, k=dimen_RI, alpha=alpha_screening, &
matrix_a=fm_mat_S_bar_ia_bse, matrix_b=fm_mat_S_ia_bse, beta=0.0_dp, &
matrix_c=fm_W)
! from W_ib,ja to A_ia,jb (formally: W_ib,aj, but our internal indexorder is different)
! Writing -1.0_dp * W_ib,ja to A_ia,jb, i.e. beta = -1.0_dp,
! W_ib,ja: nrow_secidx_in = virtual, ncol_secidx_in = virtual
! A_ia,jb: nrow_secidx_out = virtual, ncol_secidx_out = virtual
reordering = (/1, 4, 3, 2/)
CALL fm_general_add_bse(fm_B, fm_W, -1.0_dp, virtual, virtual, &
virtual, virtual, unit_nr, reordering, mp2_env)
END IF
CALL cp_fm_release(fm_W)
CALL cp_fm_struct_release(fm_struct_v)
CALL timestop(handle)
END SUBROUTINE create_B
! **************************************************************************************************
!> \brief Construct Matrix C=(A-B)^0.5 (A+B) (A-B)^0.5 to solve full BSE matrix as a hermitian problem
!> (cf. Eq. (A7) in F. Furche J. Chem. Phys., Vol. 114, No. 14, (2001)).
!> We keep fm_sqrt_A_minus_B and fm_inv_sqrt_A_minus_B for print of singleparticle transitions
!> of ABBA as described in Eq. (A10) in F. Furche J. Chem. Phys., Vol. 114, No. 14, (2001).
!> \param fm_A ...
!> \param fm_B ...
!> \param fm_C ...
!> \param fm_sqrt_A_minus_B ...
!> \param fm_inv_sqrt_A_minus_B ...
!> \param homo ...
!> \param virtual ...
!> \param unit_nr ...
!> \param mp2_env ...
!> \param diag_est ...
! **************************************************************************************************
SUBROUTINE create_hermitian_form_of_ABBA(fm_A, fm_B, fm_C, &
fm_sqrt_A_minus_B, fm_inv_sqrt_A_minus_B, &
homo, virtual, unit_nr, mp2_env, diag_est)
TYPE(cp_fm_type), INTENT(IN) :: fm_A, fm_B
TYPE(cp_fm_type), INTENT(INOUT) :: fm_C, fm_sqrt_A_minus_B, &
fm_inv_sqrt_A_minus_B
INTEGER, INTENT(IN) :: homo, virtual, unit_nr
TYPE(mp2_type), INTENT(INOUT) :: mp2_env
REAL(KIND=dp), INTENT(IN) :: diag_est
CHARACTER(LEN=*), PARAMETER :: routineN = 'create_hermitian_form_of_ABBA'
INTEGER :: dim_mat, handle, n_dependent
REAL(KIND=dp), DIMENSION(2) :: eigvals_AB_diff
TYPE(cp_fm_type) :: fm_A_minus_B, fm_A_plus_B, fm_dummy, &
fm_work_product
CALL timeset(routineN, handle)
IF (unit_nr > 0) THEN
WRITE (unit_nr, '(T2,A4,T7,A25,A39,ES6.0,A3)') 'BSE|', 'Diagonalizing aux. matrix', &
' with size of A. This will take around ', diag_est, " s."
END IF
! Create work matrices, which will hold A+B and A-B and their powers
! C is created afterwards to save memory
! Final result: C = (A-B)^0.5 (A+B) (A-B)^0.5 EQ.I
! \_______/ \___/ \______/
! fm_sqrt_A_minus_B fm_A_plus_B fm_sqrt_A_minus_B
! (EQ.Ia) (EQ.Ib) (EQ.Ia)
! Intermediate work matrices:
! fm_inv_sqrt_A_minus_B: (A-B)^-0.5 EQ.II
! fm_A_minus_B: (A-B) EQ.III
! fm_work_product: (A-B)^0.5 (A+B) from (EQ.Ia) and (EQ.Ib) EQ.IV
CALL cp_fm_create(fm_A_plus_B, fm_A%matrix_struct)
CALL cp_fm_to_fm(fm_A, fm_A_plus_B)
CALL cp_fm_create(fm_A_minus_B, fm_A%matrix_struct)
CALL cp_fm_to_fm(fm_A, fm_A_minus_B)
CALL cp_fm_create(fm_sqrt_A_minus_B, fm_A%matrix_struct)
CALL cp_fm_set_all(fm_sqrt_A_minus_B, 0.0_dp)
CALL cp_fm_create(fm_inv_sqrt_A_minus_B, fm_A%matrix_struct)
CALL cp_fm_set_all(fm_inv_sqrt_A_minus_B, 0.0_dp)
CALL cp_fm_create(fm_work_product, fm_A%matrix_struct)
IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
WRITE (unit_nr, '(T2,A10,T13,A19)') 'BSE|DEBUG|', 'Created work arrays'
END IF
! Add/Substract B (cf. EQs. Ib and III)
CALL cp_fm_scale_and_add(1.0_dp, fm_A_plus_B, 1.0_dp, fm_B)
CALL cp_fm_scale_and_add(1.0_dp, fm_A_minus_B, -1.0_dp, fm_B)
! cp_fm_power will overwrite matrix, therefore we create copies
CALL cp_fm_to_fm(fm_A_minus_B, fm_inv_sqrt_A_minus_B)
! In order to avoid a second diagonalization (cp_fm_power), we create (A-B)^0.5 (EQ.Ia)
! from (A-B)^-0.5 (EQ.II) by multiplication with (A-B) (EQ.III) afterwards.
! Raise A-B to -0.5_dp, no quenching of eigenvectors, hence threshold=0.0_dp
CALL cp_fm_create(fm_dummy, fm_A%matrix_struct)
! Create (A-B)^-0.5 (cf. EQ.II)
CALL cp_fm_power(fm_inv_sqrt_A_minus_B, fm_dummy, -0.5_dp, 0.0_dp, n_dependent, eigvals=eigvals_AB_diff)
CALL cp_fm_release(fm_dummy)
! Raise an error in case the the matrix A-B is not positive definite (i.e. negative eigenvalues)
! In this case, the procedure for hermitian form of ABBA is not applicable
IF (eigvals_AB_diff(1) < 0) THEN
CALL cp_abort(__LOCATION__, &
"Matrix (A-B) is not positive definite. "// &
"Hermitian diagonalization of full ABBA matrix is ill-defined.")
END IF
! We keep fm_inv_sqrt_A_minus_B for print of singleparticle transitions of ABBA
! We further create (A-B)^0.5 for the singleparticle transitions of ABBA
! Create (A-B)^0.5= (A-B)^-0.5 * (A-B) (EQ.Ia)
dim_mat = homo*virtual
CALL parallel_gemm("N", "N", dim_mat, dim_mat, dim_mat, 1.0_dp, fm_inv_sqrt_A_minus_B, fm_A_minus_B, 0.0_dp, &
fm_sqrt_A_minus_B)
! Compute and store LHS of C, i.e. (A-B)^0.5 (A+B) (EQ.IV)
CALL parallel_gemm("N", "N", dim_mat, dim_mat, dim_mat, 1.0_dp, fm_sqrt_A_minus_B, fm_A_plus_B, 0.0_dp, &
fm_work_product)
! Release to save memory
CALL cp_fm_release(fm_A_plus_B)
CALL cp_fm_release(fm_A_minus_B)
! Now create full
CALL cp_fm_create(fm_C, fm_A%matrix_struct)
CALL cp_fm_set_all(fm_C, 0.0_dp)
! Compute C=(A-B)^0.5 (A+B) (A-B)^0.5 (EQ.I)
CALL parallel_gemm("N", "N", dim_mat, dim_mat, dim_mat, 1.0_dp, fm_work_product, fm_sqrt_A_minus_B, 0.0_dp, &
fm_C)
CALL cp_fm_release(fm_work_product)
IF (unit_nr > 0 .AND. mp2_env%bse%bse_debug_print) THEN
WRITE (unit_nr, '(T2,A10,T13,A36)') 'BSE|DEBUG|', 'Filled C=(A-B)^0.5 (A+B) (A-B)^0.5'
END IF
CALL timestop(handle)
END SUBROUTINE
! **************************************************************************************************
!> \brief Solving eigenvalue equation C Z^n = (Ω^n)^2 Z^n .
!> Here, the eigenvectors Z^n relate to X^n via
!> Eq. (A10) in F. Furche J. Chem. Phys., Vol. 114, No. 14, (2001).
!> \param fm_C ...
!> \param homo ...
!> \param virtual ...
!> \param homo_irred ...
!> \param fm_sqrt_A_minus_B ...
!> \param fm_inv_sqrt_A_minus_B ...
!> \param unit_nr ...
!> \param diag_est ...
!> \param mp2_env ...
!> \param qs_env ...
!> \param mo_coeff ...
! **************************************************************************************************
SUBROUTINE diagonalize_C(fm_C, homo, virtual, homo_irred, &
fm_sqrt_A_minus_B, fm_inv_sqrt_A_minus_B, &
unit_nr, diag_est, mp2_env, qs_env, mo_coeff)
TYPE(cp_fm_type), INTENT(INOUT) :: fm_C
INTEGER, INTENT(IN) :: homo, virtual, homo_irred
TYPE(cp_fm_type), INTENT(INOUT) :: fm_sqrt_A_minus_B, fm_inv_sqrt_A_minus_B
INTEGER, INTENT(IN) :: unit_nr
REAL(KIND=dp), INTENT(IN) :: diag_est
TYPE(mp2_type), INTENT(INOUT) :: mp2_env
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(cp_fm_type), DIMENSION(:), INTENT(IN) :: mo_coeff
CHARACTER(LEN=*), PARAMETER :: routineN = 'diagonalize_C'
INTEGER :: diag_info, handle
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: Exc_ens
TYPE(cp_fm_type) :: fm_eigvec_X, fm_eigvec_Y, fm_eigvec_Z, &
fm_mat_eigvec_transform_diff, &
fm_mat_eigvec_transform_sum
CALL timeset(routineN, handle)
IF (unit_nr > 0) THEN
WRITE (unit_nr, '(T2,A4,T7,A17,A22,ES6.0,A3)') 'BSE|', 'Diagonalizing C. ', &
'This will take around ', diag_est, ' s.'
END IF
!We have now the full matrix C=(A-B)^0.5 (A+B) (A-B)^0.5
!Now: Diagonalize it
CALL cp_fm_create(fm_eigvec_Z, fm_C%matrix_struct)
ALLOCATE (Exc_ens(homo*virtual))
CALL choose_eigv_solver(fm_C, fm_eigvec_Z, Exc_ens, diag_info)
CPASSERT(diag_info == 0)
! C could have negative eigenvalues, since we do not explicitly check A+B
! for positive definiteness (would make another O(N^6) Diagon. necessary)
! Instead, we include a check here
IF (Exc_ens(1) < 0) THEN
IF (unit_nr > 0) THEN
CALL cp_abort(__LOCATION__, &
"Matrix C=(A-B)^0.5 (A+B) (A-B)^0.5 has negative eigenvalues, i.e. "// &
"(A+B) is not positive definite.")
END IF
END IF
Exc_ens = SQRT(Exc_ens)
! Prepare eigenvector for interpretation of singleparticle transitions
! Compare: F. Furche J. Chem. Phys., Vol. 114, No. 14, (2001)
! We aim for the upper part of the vector (X,Y) for a direct comparison with the TDA result
! Following Furche, we basically use Eqs. (A10): First, we multiply
! the (A-B)^+-0.5 with eigenvectors and then the eigenvalues
! One has to be careful about the index structure, since the eigenvector matrix is not symmetric anymore!
! First, Eq. I from (A10) from Furche: (X+Y)_n = (Ω_n)^-0.5 (A-B)^0.5 T_n
CALL cp_fm_create(fm_mat_eigvec_transform_sum, fm_C%matrix_struct)
CALL cp_fm_set_all(fm_mat_eigvec_transform_sum, 0.0_dp)
CALL parallel_gemm(transa="N", transb="N", m=homo*virtual, n=homo*virtual, k=homo*virtual, alpha=1.0_dp, &
matrix_a=fm_sqrt_A_minus_B, matrix_b=fm_eigvec_Z, beta=0.0_dp, &
matrix_c=fm_mat_eigvec_transform_sum)
CALL cp_fm_release(fm_sqrt_A_minus_B)
! This normalizes the eigenvectors
CALL comp_eigvec_coeff_BSE(fm_mat_eigvec_transform_sum, Exc_ens, -0.5_dp, gamma=2.0_dp, do_transpose=.TRUE.)
! Second, Eq. II from (A10) from Furche: (X-Y)_n = (Ω_n)^0.5 (A-B)^-0.5 T_n
CALL cp_fm_create(fm_mat_eigvec_transform_diff, fm_C%matrix_struct)
CALL cp_fm_set_all(fm_mat_eigvec_transform_diff, 0.0_dp)
CALL parallel_gemm(transa="N", transb="N", m=homo*virtual, n=homo*virtual, k=homo*virtual, alpha=1.0_dp, &
matrix_a=fm_inv_sqrt_A_minus_B, matrix_b=fm_eigvec_Z, beta=0.0_dp, &
matrix_c=fm_mat_eigvec_transform_diff)
CALL cp_fm_release(fm_inv_sqrt_A_minus_B)
CALL cp_fm_release(fm_eigvec_Z)
! This normalizes the eigenvectors
CALL comp_eigvec_coeff_BSE(fm_mat_eigvec_transform_diff, Exc_ens, 0.5_dp, gamma=2.0_dp, do_transpose=.TRUE.)
! Now, we add the two equations to obtain X_n
! Add overwrites the first argument, therefore we copy it beforehand
CALL cp_fm_create(fm_eigvec_X, fm_C%matrix_struct)
CALL cp_fm_to_fm(fm_mat_eigvec_transform_sum, fm_eigvec_X)
CALL cp_fm_scale_and_add(1.0_dp, fm_eigvec_X, 1.0_dp, fm_mat_eigvec_transform_diff)
! Now, we subtract the two equations to obtain Y_n
! Add overwrites the first argument, therefore we copy it beforehand
CALL cp_fm_create(fm_eigvec_Y, fm_C%matrix_struct)
CALL cp_fm_to_fm(fm_mat_eigvec_transform_sum, fm_eigvec_Y)
CALL cp_fm_scale_and_add(1.0_dp, fm_eigvec_Y, -1.0_dp, fm_mat_eigvec_transform_diff)
!Cleanup
CALL cp_fm_release(fm_mat_eigvec_transform_diff)
CALL cp_fm_release(fm_mat_eigvec_transform_sum)
CALL postprocess_bse(Exc_ens, fm_eigvec_X, mp2_env, qs_env, mo_coeff, &
homo, virtual, homo_irred, unit_nr, &
.FALSE., fm_eigvec_Y)
DEALLOCATE (Exc_ens)
CALL cp_fm_release(fm_eigvec_X)
CALL cp_fm_release(fm_eigvec_Y)
CALL timestop(handle)
END SUBROUTINE diagonalize_C
! **************************************************************************************************
!> \brief Solving hermitian eigenvalue equation A X^n = Ω^n X^n
!> \param fm_A ...
!> \param homo ...
!> \param virtual ...
!> \param homo_irred ...
!> \param unit_nr ...
!> \param diag_est ...
!> \param mp2_env ...
!> \param qs_env ...
!> \param mo_coeff ...
! **************************************************************************************************
SUBROUTINE diagonalize_A(fm_A, homo, virtual, homo_irred, &
unit_nr, diag_est, mp2_env, qs_env, mo_coeff)
TYPE(cp_fm_type), INTENT(INOUT) :: fm_A
INTEGER, INTENT(IN) :: homo, virtual, homo_irred, unit_nr
REAL(KIND=dp), INTENT(IN) :: diag_est
TYPE(mp2_type), INTENT(INOUT) :: mp2_env
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(cp_fm_type), DIMENSION(:), INTENT(IN) :: mo_coeff
CHARACTER(LEN=*), PARAMETER :: routineN = 'diagonalize_A'
INTEGER :: diag_info, handle
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: Exc_ens
TYPE(cp_fm_type) :: fm_eigvec
CALL timeset(routineN, handle)
!Continue with formatting of subroutine create_A
IF (unit_nr > 0) THEN
WRITE (unit_nr, '(T2,A4,T7,A17,A22,ES6.0,A3)') 'BSE|', 'Diagonalizing A. ', &
'This will take around ', diag_est, ' s.'
END IF
!We have now the full matrix A_iajb, distributed over all ranks
!Now: Diagonalize it
CALL cp_fm_create(fm_eigvec, fm_A%matrix_struct)
ALLOCATE (Exc_ens(homo*virtual))
CALL choose_eigv_solver(fm_A, fm_eigvec, Exc_ens, diag_info)
CPASSERT(diag_info == 0)
CALL postprocess_bse(Exc_ens, fm_eigvec, mp2_env, qs_env, mo_coeff, &
homo, virtual, homo_irred, unit_nr, .TRUE.)
CALL cp_fm_release(fm_eigvec)
DEALLOCATE (Exc_ens)
CALL timestop(handle)
END SUBROUTINE diagonalize_A
! **************************************************************************************************
!> \brief Prints the success message (incl. energies) for full diag of BSE (TDA/full ABBA via flag)
!> \param Exc_ens ...
!> \param fm_eigvec_X ...
!> \param mp2_env ...
!> \param qs_env ...
!> \param mo_coeff ...
!> \param homo ...
!> \param virtual ...
!> \param homo_irred ...
!> \param unit_nr ...
!> \param flag_TDA ...
!> \param fm_eigvec_Y ...
! **************************************************************************************************
SUBROUTINE postprocess_bse(Exc_ens, fm_eigvec_X, mp2_env, qs_env, mo_coeff, &
homo, virtual, homo_irred, unit_nr, &
flag_TDA, fm_eigvec_Y)
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: Exc_ens
TYPE(cp_fm_type), INTENT(IN) :: fm_eigvec_X
TYPE(mp2_type), INTENT(INOUT) :: mp2_env
TYPE(qs_environment_type), POINTER :: qs_env
TYPE(cp_fm_type), DIMENSION(:), INTENT(IN) :: mo_coeff
INTEGER :: homo, virtual, homo_irred, unit_nr
LOGICAL, OPTIONAL :: flag_TDA
TYPE(cp_fm_type), INTENT(IN), OPTIONAL :: fm_eigvec_Y
CHARACTER(LEN=*), PARAMETER :: routineN = 'postprocess_bse'
CHARACTER(LEN=10) :: info_approximation, multiplet
INTEGER :: handle, idir, n_moments_di, &
n_moments_quad
REAL(KIND=dp) :: alpha
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: oscill_str, ref_point_multipole
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: polarizability_residues, trans_mom_bse
TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: fm_dipole_ab_trunc, fm_dipole_ai_trunc, &
fm_dipole_ij_trunc, fm_quadpole_ab_trunc, fm_quadpole_ai_trunc, fm_quadpole_ij_trunc
TYPE(exciton_descr_type), ALLOCATABLE, &
DIMENSION(:) :: exc_descr
CALL timeset(routineN, handle)
!Prepare variables for printing
IF (mp2_env%bse%bse_spin_config == 0) THEN
multiplet = "Singlet"
alpha = 2.0_dp
ELSE
multiplet = "Triplet"
alpha = 0.0_dp
END IF
IF (.NOT. PRESENT(flag_TDA)) THEN
flag_TDA = .FALSE.
END IF
IF (flag_TDA) THEN
info_approximation = " -TDA- "
ELSE
info_approximation = "-ABBA-"
END IF
n_moments_di = 3
n_moments_quad = 9
! Compute BSE dipoles and oscillator strengths - Keep in memory for later usage
! Need dipoles also for spatial expectation values, which are well-defined also for triplets
ALLOCATE (fm_dipole_ij_trunc(n_moments_di))
ALLOCATE (fm_dipole_ab_trunc(n_moments_di))
ALLOCATE (fm_dipole_ai_trunc(n_moments_di))
ALLOCATE (ref_point_multipole(3))
! Obtain dipoles in MO basis
CALL get_multipoles_mo(fm_dipole_ai_trunc, fm_dipole_ij_trunc, fm_dipole_ab_trunc, &
qs_env, mo_coeff, ref_point_multipole, 1, &
homo, virtual, fm_eigvec_X%matrix_struct%context)
! Compute exciton descriptors from these multipoles
IF (mp2_env%bse%num_print_exc_descr > 0) THEN
! Obtain quadrupoles in MO basis
ALLOCATE (fm_quadpole_ij_trunc(n_moments_quad))
ALLOCATE (fm_quadpole_ab_trunc(n_moments_quad))
ALLOCATE (fm_quadpole_ai_trunc(n_moments_quad))
CALL get_multipoles_mo(fm_quadpole_ai_trunc, fm_quadpole_ij_trunc, fm_quadpole_ab_trunc, &
qs_env, mo_coeff, ref_point_multipole, 2, &
homo, virtual, fm_eigvec_X%matrix_struct%context)
CALL get_exciton_descriptors(exc_descr, fm_eigvec_X, &
fm_dipole_ij_trunc, fm_dipole_ab_trunc, fm_dipole_ai_trunc, &
fm_quadpole_ij_trunc, fm_quadpole_ab_trunc, &
homo, virtual, unit_nr, &
mp2_env, qs_env, &
fm_eigvec_Y)
END IF
IF (mp2_env%bse%bse_spin_config == 0) THEN
CALL get_oscillator_strengths(fm_eigvec_X, Exc_ens, fm_dipole_ai_trunc, &
trans_mom_bse, oscill_str, polarizability_residues, &
mp2_env, homo, virtual, unit_nr, &
fm_eigvec_Y)
END IF
! Prints basic definitions used in BSE calculation
CALL print_output_header(homo, virtual, homo_irred, flag_TDA, &
multiplet, alpha, mp2_env, unit_nr)
! Prints excitation energies up to user-specified number
CALL print_excitation_energies(Exc_ens, homo, virtual, flag_TDA, multiplet, &
info_approximation, mp2_env, unit_nr)
! Print single particle transition amplitudes, i.e. components of eigenvectors X and Y
CALL print_transition_amplitudes(fm_eigvec_X, homo, virtual, homo_irred, &
info_approximation, mp2_env, unit_nr, fm_eigvec_Y)
! Prints optical properties, if state is a singlet
CALL print_optical_properties(Exc_ens, oscill_str, trans_mom_bse, polarizability_residues, &
homo, virtual, homo_irred, flag_TDA, &
info_approximation, mp2_env, unit_nr)
! Print exciton descriptors if keyword is invoked
IF (mp2_env%bse%num_print_exc_descr > 0) THEN
CALL print_exciton_descriptors(exc_descr, ref_point_multipole, unit_nr, mp2_env, qs_env)
END IF
! Compute and print excitation wavefunctions
IF (mp2_env%bse%do_nto_analysis) THEN
IF (unit_nr > 0) THEN
WRITE (unit_nr, '(T2,A4)') 'BSE|'
WRITE (unit_nr, '(T2,A4,T7,A47)') &
'BSE|', "Calculating Natural Transition Orbitals (NTOs)."
WRITE (unit_nr, '(T2,A4)') 'BSE|'
END IF
CALL calculate_NTOs(fm_eigvec_X, fm_eigvec_Y, &
mo_coeff, homo, virtual, &
info_approximation, &
oscill_str, &
qs_env, unit_nr, mp2_env)
END IF
DO idir = 1, n_moments_di
CALL cp_fm_release(fm_dipole_ai_trunc(idir))
CALL cp_fm_release(fm_dipole_ij_trunc(idir))
CALL cp_fm_release(fm_dipole_ab_trunc(idir))
END DO
IF (mp2_env%bse%num_print_exc_descr > 0) THEN
DO idir = 1, n_moments_quad
CALL cp_fm_release(fm_quadpole_ai_trunc(idir))
CALL cp_fm_release(fm_quadpole_ij_trunc(idir))
CALL cp_fm_release(fm_quadpole_ab_trunc(idir))
END DO
DEALLOCATE (fm_quadpole_ai_trunc, fm_quadpole_ij_trunc, fm_quadpole_ab_trunc)
DEALLOCATE (exc_descr)
END IF
DEALLOCATE (fm_dipole_ai_trunc, fm_dipole_ij_trunc, fm_dipole_ab_trunc)
DEALLOCATE (ref_point_multipole)
IF (mp2_env%bse%bse_spin_config == 0) THEN
DEALLOCATE (oscill_str, trans_mom_bse, polarizability_residues)
END IF
IF (unit_nr > 0) THEN
WRITE (unit_nr, '(T2,A4)') 'BSE|'
WRITE (unit_nr, '(T2,A4)') 'BSE|'
END IF
CALL timestop(handle)
END SUBROUTINE postprocess_bse
END MODULE bse_full_diag